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Irreducible representations of compact groups can be partitioned into three classes (character test 
+ ,0, - ). This classification is the same for real, complex, and quaternionic representations and 

in all three cases a peculiar, type-adapted form of the representation matrices may be chosen 
(t reps). In this paper it is shown how to construct t reps of semidirect products G ex g starting with 
t reps of G and t reps of some covering groups of subgroups of g. The advantage of using t reps 
shows up in that the factor system of the little cogroups is real in two of three cases and that real, 
complex, and quaternionic representations are obtained simultaneously. The method is 
specialized to direct products and generalized to induction from normal subgroups. 

PACS numbers: 02.20. + b 

1. INTRODUCTION 

Matrix representations of compact groups irreducible 
over the field of complex numbers can be divided into three 
disjoint classes: the representation either can be brought into 
real form, or is inequivalent to its complex conjugate, or is 
equivalent to its complex conjugate, but cannot be brought 
into real form. This partition does not only hold for complex 
representations but is also valid for real and quaternionic 
representations. 1.2 No matter what representation field is 
chosen, belonging to a certain class means always that the 
representation is essentially a real or a complex or a quater­
nionic matrix representation. This fact is often obscured by 
similarity transformations but it is always possible to make 
the intrinsic algebraic structure transparent: If the field 
characterizing the type of the representation is a subfield of 
the representation field (e.g. R C q this is achieved by find­
ing a matrix representation with elements in the subfield. If 
on the other hand the representation is characterized by an 
extension of the representation field (e.g. Q::J q then the ma­
trix can be composed of small square matrices each having a 
peculiar structure which is typical for the extension field. 

To choose type-adapted representations is to eliminate 
redundant information from the beginning. In fact, as can be 
seen from the definitions given in Sec. 2, this choice reduces 
the number of real parameters needed to fix a matrix repre­
sentation by! for complex representations (averaged over all 
three types) and by fJ. for noncomplex ones. To consider real 
and quaternionic representations of a group along with the 
familiar complex ones is both of mathematical and physical 
interest. For these representations have been shown to be 
equivalent to the combination of a complex representation 
and a commuting anti unitary operator and, if chosen in a 
type-adapted form, to simplify the matrix representation of 
invariant operators. 1.3 It therefore seems worthwhile to dis­
cuss the construction and properties of type-adapted repre­
sentations over the reals, the complex numbers, and the qua­
ternions. The topic considered in this paper is the 
construction of type-adapted representations of semidirect 
product groups. In this problem the advantage of the repre­
sentations considered here shows up in that the factor sys­
tem of the little cogroups is real in two of three cases and that 

real, complex, and quaternionic representations are ob­
tained in one run. 

2. TYPE-ADAPTED REPRESENTATIONS (t REPS) 

We consider matrix representarions of compact groups 
over a (skew) field IF' of characteristics zero (reals, complex 
numbers, quaternions). A matrix representation with ele­
ments from IF' is called real iflF' = R, complex iflF' = C, and 
quaternionic iflF' = Q.1t is said to be oflF type and adapted 
to its type if one of the following conditions is satisfied: 

(i) IflF = IF' the matrices D F• (x), xEG, are.norm preserv­
ing and absolutely irreducible. A norm-preserving matrix is 
composed of orthonormalized row (or column) vectors, the 
components of which are elements of IF'. Therefore norm 
preserving means orthogonal iflF' = R and unitary iflF' = C. 
For JF' = Q, where the term hyperunitary has been intro­
duced, care must be taken of the noncommutativity of the 
multiplication. The term "absolutely irreducible" means 
that it is impossible to find a norm-preserving matrix T such 
that the matrices TDF, (x)T - I, xEG, all decompose into a 
direct sum of smaller matrices, impossible even if the ele­
ments of T are taken from an extrension field JF" (~JF'). 

(ii) If JF C JF' the matrices DF , (x) coincide with the matri­
ces considered in (i). This implies, for instance, that a comlex 
representation (JF' = q of R type (JF = R) has to be real. 

(iii) If JF::J JF' the matrices DF• (x) are obtained from the 
matrices DIl'(x) considered in (i) by replacing the matrix ele­
ments (belonging to JF) by small square matrices (with ele­
ments from JF'). This is done according to one of the follow­
ing conventions (cf. Ref. 2): 

a+ib~RC[a+ib] =(:-!), 
a + ib + jc + kd~R Q[a + ib + jc + kd] 

-b -c 

a -d 
d a 

-c b 

a + ib + jc + kd~C Q [a + ib + jc + kd ] 

(
a + ib 

- - c + id 
c + id\ 
a - ib)' 

(2.1) 

(2.2) 

(2.3) 
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Here a,b,c,dER, and iEC and iJ,k, EQ are the familiar units of 
these fields. The matrices obtained by one of the substitu­
tions (2.1-2.3) are also norm preserving and irreducible over 
F' (but not over F). 

Summarizing the above definitions one sees that t reps 
ofIR type are always real; those ofC type are complex (F = C 
or Q) or real matrices composed of sub matrices of the form 
(2.1) (F' = IR); and the t reps of Q type are quaternionic 
(F' = Q) or composed of the complex 2 X 2 matrices (2.3) 
(F' = q or of the real 4 X 4 matrices (2.2) (F' = IR). To make 
the notation more concise we write R (x) instead of DII (x), etc. 
The upper index A labeling the equivalence class of the t rep 
D A (x) is chosen to be A (or a) if D (x) is ofIR type, B (or P) if 
D (x) is ofC type, and r(or y) ifit is ofQ type. The same labels 
can be used for all three representation fields; only if F' = C 
must the label B be replaced by the pair B + ,B - . In this 
case the t reps are assumed to satisfy 

[CB+(X)]*=CB-(x) for all XEG. (2.4) 

Note that these representations are equivalent over Q. We 
choose 

Q B(X) = C B + (x). (2.5) 

To each representation D (x) (not necessarily irreduci­
ble) a character X (x) can be assigned. This is done by the 
definitions 

XI\(x) = traceR (x), 

xcix) =trace C(x), 

X v (x) = real part of trace Q (x). 

(2.6) 

(2.7) 

(2.8) 

(The real part of a + ib + jc + kd is a). Taking into account 
the definition of t reps this implies 

A A A 
XI~ =xc =Xv' 

B B+ + B- 2 B XII =Xc Xc = Xv' 
r 2 r 4 r XII= Xc= :{'1)' 

(2.9) 

(2.10) 

(2.11) 

The characters form a basis for the set of square-integrable 
class functions defined on G. However to be complete also 
for F' "# C this basis has to be supplemented by functions t/JB 
defined by 

t/J:(x) = 2IR ~I,JO(X) = - iX~+(x) + iX~-
J 

X~*t/J: =6AB t/J:(mB)-I, 

t/J: *t/J: = 6BBX : (mB) - I. (2.17) 

These equations imply the orthogonality relations 

(X ~,X ~ ') = D AA pA, (X ~, t/J:) = 0, 

(t/J:, t/J:') = 2OBB' , (2.18) 

because the XS and the t/Js are continuous functions, t/JB(e) 
=0, and 

(J,g) = (g,J) =f*g(e) for f,gEL 2(G,R). (2.19) 

The characters can be used to determine the type of a 
given irreducible representation D: since the real numbers t: defined by 

MxX:(x2
) = t:, (2.20) 

are positive for A = A, zero for A = B, and negative for 
A = r. We therefore arrive at the following classification 
scheme: 
type 
R 
C 
Q 

kind 
1st 
3rd 
2nd 

X test 

+ 

° 
3. CONSTRUCTION OF t REPS 

labels 
A,a 
B,p 
r,y 

(2.21) 

It has been shown in Ref. 3 how to obtain t reps from a 
given set of complex unitary representations. There it also 
has been pointed out that real t reps can be found construct­
ing a suitable basis, in the following called t basis, of the real 
group algebra AR (G ). Here the elements aEAR (G ) are defined 
as real linear combinations of group elements; more precise­
ly 

a = Mxa(x)x, aE L 2(G,R), (3.1) 

where x-x is the regular representation of G (cf. Ref. 2, Sec. 
2). The goal is to find elements eJKEAR (G) satisfying 

(eJK)t = e~J' 

eJKeJ'K' =6AA ,eJK" 

(3.2) 

(3.3) 

and elements f1EAR (G) behaving like the units of the field 
which determines the types of the representation. That is, if 
eA is defined by 

A ~A (A)t e = £..eJJ = e , (3,4) 
J 

= I[ - iQ~Ax) + Q~J(x)*i] = 2~(x). (2.12) then 
J 

This set is then closed under convolution if the convolution 
f*g of two functions J,gEL 2( G ) is defined by 

f*g(y) = MJ(x)g(x-Iy), (2.13) 

where Mxh (x) is the normalized Haar integral of h, 
Because of Eqs. (2.9-2,11) the quaternionic characters 

coincide with the real ones up to constant factors, 

A A A pA 1 pB 2 pr = 4. XR =p XQ' =, =, (2.14) 

The real characters satisfy 
X~*X~' =DAAx~(mA)-I, (2.15) 

pAmA = dim R A (x) = ~ (e). (2.16) 

Moreover 
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A = A: foA = eA; (3.5) 

A = B: f: = eB, fiB = iB, 
(iBf = - eB, (iB)t = _ iB, eBiB = iBeB = iB; 

(3.6). 

A = r:f{; = er, f[ = ir, ff = jr, ff = kr, 
(ir)2 = _ er, (ir)t = _ ir, erir = irer = ir, 

irjr = _ jrir = kr , and cyclic permutations of iJ,k. 
(3.7) 

The e's and the fs are related by 

eJKf1' = f1'eJK 
=0 for A"#A '. 

P. Kasperkovitz 
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If the group G is finite the determination of a t basis 
{ e1K' f11 is a purely algebraic problem. In this case the ele­
ments e1J can be calculated computing and factoring (over 
H!) the minimal polynomials of a sufficiently large number of 
self-adjoint elements of AR (G). The finer and finer decompo­
sition of self-adjoint idempotents ends up with idempotents 
e' ( = e1J) for which the only sef-adjoint elements of the form 
e' ae', aeAR (G ), are the real multiples of e' (primitive idem po­
tents). Once the e1J's are known the elements e1K' J =l=K, are 
determined from the elements e1Jae~K =1=0 (for details see, 
e.g., Ref. 4). Finally the f 's are found by studying the struc­
ture of the division algebra consisting of all elements e~ ae~, 
aeAR (G). This algebra contains units ~,s = e~ase~ which 
satisfy equations similar to one of the sets (3,5-7) but with eA 

replaced by e~. From these elements the fs are obtained by 

11 = LeJof' eec0. 
J OO,S 

The same methods work for a compact continuous 
group G once the elements eA are known. However, to deter­
mine these elements, forming a countable set in this case, 
nonalgebraic methods have to be used (functional anlalysis, 
differential equations, etc.). This remark also applies to the 
completeness relation. 

aeAR (G ):a = L e1K11R 1S,KO(a), 
AJKS 

R1s,KO(a) = (mApA)-'(e1KI1,a)eR. (3.9) 

a,bEAR(G):(a,b) = (b,a) = Mxa(x)b(x). (3.10) 

If the e's and the f's are known the corresponding real t 
reps, 

R A(X) = R A (x), 

can be obtained either from 

or from 

e1K11 = pAmAMxR 1S,KO(X)X 

and 

R ~S,KT(X) = R ~T [C ~K+ (x)], 

R ~,KT(X) = R ~T [Q S'K(X)]. 

(3,11) 

(3.12) 

(3,13) 

(3.14) 

(3.15) 

Combined with (2.1-2.3) the last two equations do not only 
show the peculiar structure of the real t reps R Band R rbut 
also indicate how to obtain the non real t reps from the real 
ones. 

4. SEMIDIRECT PRODUCTS 

As in the familiar complex case it may be convenient to 
construct the irreducible representations of a large group by 
means of irreducible representations of smaller groups (e.g., 
subgroups) which are easier to construct or even already 
known. The groups considered in this section are semidirect 
products 

G = GCxg; G = {E,x, Y, ... J compact, 

g = I e,x,y, ... j finite. (4.1) 

We focus on the construction of a t basis of AR (G) which, as 
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has been pointed out before, contains all relevant informa­
tion and is of more interest in applications than the corre­
sponding matrix representation. The applications we have in 
mind are real t reps of symmorphic space groups which are 
of interest in some problems of solid state theory (e.g., lattice 
dynamics, see Ref. 3). In the following discussion G is neither 
assumed to be abelian nor finite but a complete set of real t 
reps ofG or, equivalently, a tbasis of AR (G) is assumed to be 
known. The construction, described under Secs. 4A-4F, 
parallels the construction of complex unitary irreducible re­
presentations of semidirect products.5

.
6 

A. Equivalence of t reps of G 

The t reps of G may be partitioned into disjoint classes 
according to the equivalence relation 

A -A' iff xeAx- 1 = eA' for some XEg. (4.2) 

It should be noted that the finite-dimensional two-sided 
ideals 

(4.3) 

and A~ . (G ) are isomorphic if A - A '. Accordingly if x inter­
twines A and A • as indicated in (4.2) and {eJK ,f11 is a t basis 
of A~ (G) sois {xe1Kx- l, xf1x- ' l of A~ '(G). The first task in 
constructing a t basis of AR (G) is to determine the equiv­
alence classes {A I of t reps of G and to fix a set of representa­
tives A e I A J, one for each class. 

B. Little cogroups 

For each representative A the little cogroup gA is the 
subgroup of g defined by 

xegA if XCAX- I = cA for all central elements of A~ (G). 
(4.4) 

If A = A or rthe central elements are all real multiples of eA. 
If however A = B there are two linearly independent central 
elements, viz. eB and iB [cf. Eqs. (3.3-3.8)]. In this case a 
second group, denoted by gB is defined by 

xEjB iff xeBx- 1 = eB and xiBx- ' = ± iB. (4.5) 

If there does not exist an element xEg which transforms iB 

into - iB then gB = g B. If such an element, say X, exists then 
gB = I gB,xgB j = 19B ,gBX-lj, i.e., gB is a normal subgroup 
of g B of index 2. The group gB is then called the proper little 
cogroup and gB is called the full little cogroup. We note in 
passing that the (proper) little cogroups are the same groups 
as encountered in the construction of complex 
representations. 

C. Coverings of little cogroups 

To each xegt an inner automorphism of the ideal A~ (G) 
is assigned through the mapping aA_xaAx - I, transforming 
the t basis I eJK' f11 of A~ (G) into the equivalent basis 
I xe1Kx- l, xl1x- ' j. Since the automorphism is inner (cf. 
Ref. 2, Sec. 4) it is possible to find for each xegA and element 
uA(x)eA~ (G) such that 

uA (x)tuA (x) = uA (x)uA (x)t = eA
, 

xeJKx- 1 = uA (x)teJKuA (x). 

p, Kasperkovitz 
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(4.7) 
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The explicit construction of an element u corresponding to 
an inner automorphism (here given by x) has been described 
in detail in Ref. 2, Secs. 4 and 6B. This construction yields 
ull(e) = ell and 

(4.8) 

The last condition is always satisfied for abelian G's. If Gis 
not abelian it is sufficient to construct the elements ull(x) for 
the generators x,y, .. and to put ull(z) = ull(x)mull(yr···if 
Z = x"'yn .... Now if x~, UIl(X)EA~ (G) is an element satisfy­
ing (4.6,7), and 

(4.9) 

then ull(x)xfx~ IUIl(X)tEF~ ifffEF~. Moreover, since the 
mapping f-+UIl(X)xfx~ IUIl(X)t is invertible it is automor­
phism of the division algebra F~: for F~ ~R and F~ ~C it is 
the identical mapping (iB is invariant under gB!), and for F~ 
~Q it is an inner automorphism since all automorphisms of 
Q are inner. In this case there exists a unimodular quater­
nion qEQ inducing this automorphism and therefore an ele­
ment qr(x)EF~ such that 

qr(xtqr(x) = qr(x)qr(x)t = er , 

qr(X)tejKqr(X) = ejK' 

ur(x)xf~x~ IUr(X) = qr(xff~qr(x), 

the second equation following from (3.8). Putting 

wll(x) = Ull (x) for A = A,B, 

= qll (x)ur (x) for A = r, 
we see that 

(4.10) 

(4.11 ) 

(4.12) 

(4.13) 

xallx~ I = wll (x)tallwll (x) for all aIlEA~ (G) (4.14) 

and that the factors in the definition of XII, 

XII = wll (x)x = xwll (x), (4.15) 

may be interchanged because ofwll(x)EA~(G). 
If x,YEg and xy = z then y~ IX~ IZ induces the identical 

automorphism and WIl(y)WIl(X)WIl(Z)t is an element of A~(G) 
commuting with all other elements of this ideal. 

xYEg:wll (y)WIl (X)WIl (xy)t = ell (X,Y)E center of A~ (G). 
(4.16) 

Now if A = A or A = rthe center consists of multiples 
of ell and ell is unimodular because of (4.6, 10). Hence 

A = A,r: ell (x,y) = ± ell. (4.17) 

ForA = Bonehas 

eB(x,y) = eB cos ifJ (x,y) + iB sin ifJ (x,y) 

=exp\iBifJ(x,y)J, ifJ(x,Y)E[O,21T), (4.18) 

i.e., the factors behave like unimodular complex numbers. It 
seems to be unknown which phases can occur in (4.18) but it 
has been shown already by 1. Schur how to redefine the ele­
ments w so that the new factors behave like nth roots of 
unity, n being the order of gB. The new elements ware given 
by7 

(4.19) 
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where the angles tf; have to be determined from 

tf;(x) = IgBI~1 IifJ (x,y). (4.20) 
)lEge 

If the elements ware used instead ofw in (4.16,4.18) the 
phases are found to satisfy 

19B Ii (X,y) = multiple of 21T. (4.21) 

Moreover 

i (x,y) = 0 if gB is abelian. (4.22) 

In the following it is always assumed that the w's are norma­
lized according to (4.19), if A = S, and that these normalized 
ws are used in the definition( 4.15) of the elements xB. 

Having determined the (normalized) elements WIl(X) for 
all x~ it is possible to define a group pI(' by 

pI(' = mUltiplicative group generated by XII, x~. 
(4.23) 

The center of pI(' contains the group 

Zll = multiplicative group generated by ell (x,y), x,y~, 
(4.24) 

and pI(' /Zll "",gil; in this sense pI(' is a covering group of gil. 
The symbol pI(' has been chosen to indicate that, in an equiv­
alent terminology, this group could have been called a pro­
jective representation of gil with factor system Zll. Since this 
factor system is at most of order 2 for A = A,r and at most of 
order IgBI for A = S pgll is always a finite group. 

D. t reps of the covering groups 

Let pgll be the abstract group defined by the isomor­
phism pgll ~pl('. The the next step is to construct real t reps 
of the groups pgll or t bases of the algebras AR (pgll ). How to 
obtain these objects has been indicated in Sec. 3: If complex 
unitary irreducible representations of the group are known 
they can be used to form real t reps from which the t-bases 
are obtained by Eq. (3.13). Likewise, since pgll is finite, the 
algebraic methods outlined before can be used to construct 
the t bases directly. Moreover if pgll is itself a semi direct 
product the strategy described in this section may be used to 
reduce the construction of its t bases to that of simpler 
groups (see also Secs. 5 and 6). 

Not all the t reps of a group p~ are needed but only a 
subset depending on the factor system Zll. For let R "(x) be a 
real t rep of pgll and XII be the image of x in pI('; then the 
elements 

efkt; = p"m"MxR ;.ko(x)ill (4.25) 

may vanish for p~ =l=gII since then the elements ill are not 
linearly independent. All these linear dependences may be 
traced back to those of elements of Zll, i.e., to relations of the 
form 

L ia(x) = 0, a(x)ER. (4.26) 
XEZ/\ 

A representation A of pgll is of interest if, and only if, all Eqs, 
(4.26) with R "(x) substituted for i are identically satisfied. In 
terms of projective representations this means that only 
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those irreducible representations are allowed which have the 
same factor system as the original representations. 

E. t reps of the little groups 

For the semi direct product groups considered here the 
little groups may be defined as the semi-direct products 
GA = GCxpg/. For a fixed A and an allowable A Eqs. (3.2-
3.8), (4.25), and (4.14 and 4.15) imply that the real linear 
combinations of the elements 

eJKFseJkt; = eJkt;eJKFs = eJKeJkFst;., (4.27) 

form a two-sided ideal in All (G A 
). This ideal does not neces­

sarily correspond to one single t rep ofGA
, and even ifit does, 

the elements (4.27) need not constitute a t basis. An obvious 
exception is the case where one of the two representations 
involved is of IR type, e.g., A = A. In this case the elements 

(4.28) 

form a t basis and 

A A is of the same type as A. (4.29) 

In all other cases the passage from (4.27) to t bases of minimal 
two-sided ideals involves only linear transformations of the 
elements f,'t;. If, for instance, AA = BfJ one introduces the 
idempotents 

e[B(3IK=HeBtf+(_WiBi'3], K=O,I, (4.30) 

and defines the units iBf3K by 

(4.31) 

It is easily verified that these elements combined with 

(4.32) 

constitute t bases of the two inequivalent t reps BfJ 0 and BfJ 1, 
and that 

BfJK is of C type. 

Next consider AA = By. Choosing 
By _ B 1" [Byl 

eJjL.Kkl - eJKejk eLi , 

e!2YI = ! [eBer + iBiY], 

e\~YI = HeBer - iBjY], 

eb~rl = e!2Yly = Ye\~YI, 
e\~YI = - ye!2rl = - e\~rly, 

iBr = iB, 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

one sees that the elements (4.34), (4.36) form a t basis and that 

By is of C type. (4.37) 

Finally, if AA = Fy, it is possible to define elements ei'jYI, 

eb:;rl = Herer + irjY + YY + kfkr], 

eb;rl = eb:;rljY, eb?1 = eb:;rly, eb?1 = eb:;rlkY, 

e\~rl = - ireb:;rly, e\~rl 

= - jYeb:;rlkr, e1~rl = - Yeb:;rlkr, 

e~Ylt = e)[rl, err:rl = ei.'~rleb~rl, (4.38) 

which can be used to define the t basis 

(4.39) 
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Its structure shows that 

Fy is of IR type. (4.40) 

This exhausts all possibilities since the remaining three cases 
(AA = Ba,Fa,FfJ) are obtained from (4.27) and (4.34-4.36) 
simply by interchanging the roles of A and A. 

We note in passing that the t reps corresponding to the t 
bases (4.31,4.32), (4.34,4.36), and (4.39) can also be obtained 
from the tensor products of the t reps R A and R '\ i.e., from 
the matrices with elements 

[R A (X) Ii!; R A (x) LSjs.KTkt = R Js.KT(X)R j..kt (x), (4.41) 

by orthogonal transformations involving only the indices 
Ss,Tt. For AA = BfJ this reads 

DKK,R ~t.~kt(XX) 

- " R[B(31 RB (X)R(3 (-)R[B(31 - L S'S',I"-'" JS',KT' js'.At' X Tit ',K't' 
S's'T't' 

where R [B(31 is the matrix 

y2 1 

1 

o 
o 

R [B(31 =_1 (- ~ 
o 

Rows: Tt = 00,10,01,11. 

Columns: KS = 00,01; 10, 11. 

1 

o 
o 

-1 

Similar results hold for A = y, where 

Dmm,R ~rS,Kkls(Xi) 

D 

(4.42) 

(4.43) 

= I R 111,~LsR JS',KT' (X)R 1"kt,(i)R ~;'~m'ls , (4,44) 
Sis/Tit' 

and m is an index labeling the identical copies of R Ay appear-
ing in the decomposition of R A Ii!; R r. 

A=B:m=O,l. (4.45) 

A = r: m = 0,1,2,3, (4.46) 

The transformation matrices are given by 

R [Byl 

0 0 0 -1 0 1 0 0 

0 0 0 -1 0 0 0 

0 0 0 0 0 0 

1 0 0 0 0 0 0 
-
J2 0 -1 0 0 0 0 0 -1 

1 0 0 0 0 0 0 
-1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 

Rows: Tt = 00,10,01,11,02,12,03,12. 

Columns: mls = 000,001,010,011; 100,101,110,111. 

( 

E 1 J J -1 E K -J 
R [rrj = ~ (4.47) 

< -J -K E l' 

-K J -1 E 

E=RQ[I], I=RQ[i], J=RQU], K=RQ[k], 

R Q[q], see Ref. 2, Eq. (2.30). 

P. Kasperkovitz 5 



                                                                                                                                    

Rows: Tt = 00,10,20,30,01, .. ,31,02, .. 32,03, .. ,33. 

Columns: ml = 00,01,02,03;10, .. ,13;20, .. ,23;30, .. ,33. 
(4.48) 

Some more manipulations are needed if A = Sand gB 
=1= gB. Since gB is a normal subgroup of g B = ! gB ,xgB) = 19B, 
gBx-l] and the elements of this group map central elements 
of A: (G) onto central elements the covering of the proper 
little cogroup, pgB, can be extended to a covering of the full 
little cogroup, namely pgB = lpgB,ipgB) = lpgB,pgBi- I). 
Therefore it is possible to define in an obvious way a proper 
and a full little group in this case. The (allowable) t reps ofGB 

may be obtained from those ofGB but their explict construc­
tion depends on whether the quantity 7 defined by 

(4.49) 

vanishes or not. If it does a t basis of GB is given by the 
following expressions: 

7=0: 

B)' (K)O - N B)' (KI - - n N ° 1 
eJj(L IN.Kk (I)n = X eJj(L I.Kk (I I X , ,n = , , 
iBA 1"10 = iBA 1"1 + iiBA IKli - I. 

SA (K)O is of C type. 

(4.50) 

(4.51) 

(4.52) 

If 7=1= 0 the situation is slightly more complicated. The first 
thing to be observed in this case is that the mapping 
a~iai-I, defined for all aEA~A IKI (GB), is an automorphism 
of this ideal. This automorphism is an outer one because of 
(4.28) with A---+a, A~S, (4.31), (4.36), and iiBi- 1 = - iB. 
Therefore 

(4.53) 

There exists an element iiBA IKIEA~A IKI (GB) (constructed by the 
same method as the elements ull(x), x~, before) such that 

-BA IKlt BA IKI -BA 1"1 _ - BA 1"1 - - I 
U eJjILI.Kki/IU - xeJJILI,Kki/lx , 

Accordingly defining 

one has 

iB), 1"liBA (Kit = iBA 1,')tiB" 1"1 = eBA 1"1, 

iBA 1"leBA 1"1 iBA (,'It _ eBA 1"1 
JjILI.Kkl/l - JjILI,Kki/I' 

iBA 1"liBA 1"liBA l"lt = _ iBA (.1, 

and 

(4.54) 

(4,55) 

(4,56) 

(4.57) 

(4,58) 

(4.59) 

the last equation following from the fact that (4.49) is an 
element of A~A 1,,1 (GB) and induces the identical mapping. 
Combining (4.58) and (4.59) one finds exp! + iB" l"le ] 
= exp! - iBA l"le I; therefore e = 0 or 1T and 

(4.60) 

Taking into account Eqs. (4.56-4.58,4.60) the corresponding 
t bases of GB are easily constructed. 

7= 1: 
BA (KII - I I _ BA IKI . 

eJjlLI.Kk(l1 - eJj(LI,Kk(ll' 
(4.61) 
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iB).(KI( - II = iB).(KI, jB).(Kli - II = iB).(KI, 

kB)' IKI( - II =~B)' 1KliB). (KI; 

SA (K)( - 1) is of Q type. 

7= + 1: 
B)' (KII + I) _ B)' IKI [B)' IKI], 

eJj(LIN.Kk(lln - eJj(L I.Kk(1) e Nn , 

e~AIKII = (1I2)[eBA (KI + iB)' (Klx:B)' (KI], 

e\~A(KII = (1I2j[eBA (KI _ iBAIKIX:BAIKI], 

e\~AI"11 = e~AI"lliBA("1 = _ iBA(Kle\~).IKII, 

eb~A(KII = _ iBA(Kle~A(KII = e\~).IKlliBAIKI; 

SA (K)( + 1) is of lR type. 

F. t reps of the semidirect product group 

(4.62) 

(4.63) 

(4.64) 

(4.6~) 

(4.6t) 

The final step is to induce the t reps of G = G&.g fron 
the t reps of the (full) little group. To this end g has to be 
decomposed into cosets with respect togA (or gB, respectiv<­
ly) and a fixed set of coset representatives has to be chosen 
First assume that 

A =l=S or A = B, gB =gB: 

g = [yl0lgA, y(llgA, ... ), yl0l = e. 

A t basis of G is then given by 

and 

111,11"11 _ IPIII).IKI (pI-I 
eJj(L iP.Kk lI)p - Y e JjlL ).Kk (I) Y , 

f! IIA IK) 1 = 2)' p)f~A (K)y( p) - I, 

P 

[ AA (K)] is of the same type as AA (K). 

(4.6T
) 

(4.6:) 

(4.6') 

(4.70) 

The remaining cases are handled in an analogous manner. 

A = S, gB=I=gB: 

g = !y(OlgB, ylllgB, ... ], yl0l = e. 
I BA IKIT) _ IPI B).IKIT (pI - I 

eJj(L liN )P.Kk (llln)p - Y e JjlL liN ).Kk (I lin) Y , 

(4.71) 

(4.7!) 

f!B).(K)TI = 2)'P)~A(K)Ty(P) -I. (4.7\) 
p 

The type of I SA (K)71 is given by 7 ( = 0, ± 1). (4.n) 

This concludes the construction of t reps of semi direct 
products. That the t bases obtained this way satisfy Eq. (3.~) 
is obvious from their construction (xt = x -I). That (3.3) 
holds true follows from 

~B X . , 

(4.7;) 

(4.75) 

these equations also show that the fs of the t bases of G _ 
behave like the fs of the t bases of the little groups Gil (or G

l
) 

which explains propositions (4.70,4.74). That this method is 
exhaustive may be shown by successively proving the con­
pleteness of the bases ! eJK f1x I all reps A, all xEg J and 
I y'ell).IK)(TI filA (KIIT)y- I I all representatives A all al-
I Jj(L)(N ).Kk (I )(n) s ' 

lowable representations A (K)(7), all coset representatives 
y,y'j. 

p, Kasperkovitz 



                                                                                                                                    

5. DIRECT PRODUCTS 

The above considerations are greatly simplified ifG is a 
direct product of the form 

G = G xg, G,g compact. (5.1) 

In this case Xx = xX for all X EG, XEg, I A I = A, and gA 
= pgA = g; therefore the construction outlined above re­

duces to Sec. 4E once the t reps of G andg are known. If these 
representations are denoted by A and A one finds [cf. Eqs. 
(4.29,4.33,4.37)] 

Aa,ry are of R type; 

A(J,Ba,BpK,By,rp are of C type; 

Ay,ra are of Q type. (5.2) 

This is in agreement with the character test (2.20) because 
the character of the representation R A ® R " containing the t 
rep R A" (K) is X ~ ""(Xx) = X~ (X)ri (x). 

6. INDUCTION FROM NORMAL SUBGROUPS 

It is also possible to generalize the methods of Sec. 4 to 
include the construction of t reps by induction from t reps of 
a normal subgroup. Let G, G, and g be related by 

G = compact normal subgroup of G, 

G/G~g (finite), (6.1) 

and let "g" be a fixed set of coset representatives with respect 
to G. 

G = I Ge,Gx,GY""I, "g" = I e,x,y,···l· (6.2) 

The product of two coset representatives is then given by 

yx = Z [x,y]z[x,y], Z [X,y]EG, Z[X,y]E"g", (6.3) 

where the elements Z and z are uniquely determined by x and 
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y. Assume furthermore that the scheme of Sec. 4 has been 
followed up to Eq. (4.15) but with g replaced by "g" every­
where, and that the elements WA(X)EA~ (G) satisfying (4.14) 
have been constructed for all xE"g". Then 

xAyA = cA (X,Y)ZA, cA (x,y) = wA (y)wA (X)ZWA (z)t, 

Z = Z [x,y] , z = z[x,y], (6.4) 

because of (4. 14) and (6.3). But 

y-1x-1Z[x,y]z[x,y]aAz[x,y]-IZ[x,y]-lxy 

= cA (x,y)aAcA (x,y)t = aA for all aAEA~ (G), (6.5) 

which again implies 

cA (x,y) E center of A~ (G). (6.6) 

Hence the conclusions following (4.16) are again valid and 
the further scheme of Sec. 4 can be applied as it stands. Com­
bined with the content of this section this method shows, 
among other things, how to construct t reps of both symmor­
phic and nonsymmorphic space groups. 

'F. J. Dyson, J. Math. Phys. 6,1199 (1962). This article not only covers 
most of the results of Ref. 3 (and some of Ref. 2) but is also more general 
since it contains the algebraic classification of corepresentations and their 
commutants for arbitrary magnetic groups. 
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3p. Kasperkovitz and O. Kahl, J. Math. Phys. 22, 2404 (1981). 
4R. Dirl and P. Kasperkovitz, Gruppentheorie (Vieweg, Braunschweig, 

1977), pp. 33-37, 56--62. 
~L. Jansen and M. Boon, Theory of Finite Groups (North-Holland, Amster­
dam, 1967) pp. 153-161. 

oR. Dirl, J. Math. Phys. 18, 2065 (1977). 
7C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and 
Associative Algebras (Wiley, New York, 1962), pp. 358-365. 
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Type-adapted subduction matrices 
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If an irreducible representation is restricted to a subgroup it becomes reducible in general. The 
matrices transforming this reducible representation into a direct sum of irreducible constituents 
are called subduction matrices. Their structure is discussed for real, complex, and quaternionic 
representations where all these representations are assumed to show a peculiar structure 
characteristic for the type of this representation (character test +, 0, -). The choice of these 
type-adapted representations, a convention possible for all compact groups, considerably reduces 
the number of parameters needed to fix a subduction matrix. 

PACS numbers: 02.20. + b 

1. INTRODUCTION 

In the preceding paper i (referred to as I) it has been 
shown how to obtain type-adapted representations (t reps) of 
a group from (projective) t reps of a normal subgroup. Here 
we consider the inverse problem: How does a given t rep A of 
a group G decompose into t reps A of a subgroup g (which 
need not be normal) if A is restricted to g? The essential result 
of this paper is that the matrix which transforms the (reduc­
ible) representation D A !g into a direct sum of t reps D A can 
be put into a form which is adapted to both A and all theA's 
contained in this representation. That is, this so-called sub­
duction matrix can always be chosen to reflect the internal 
algebraic structure (i.e., the type) of the representations in­
volved. Similarly to I, the problem is essentially solved if it is 
solved for real t reps because the complex and quaternionic 
subduction matrices are obtained from the real ones accord­
ing to some simple algebraic rules (substitutions, transfor­
mations) depending only on the types of the representations 
involved. It turns out that this method reduces the number 
of real parameters needed to fix a complex subduction ma­
trix. As a byproduct we also find that the multiplicities of the 
representations A contained in a representation A have to be 
even in some instances or even multiples of four, if noncom­
plex representations are considered. 

IfG = gxg(direct product) theresuIts of this paper can 
be combined with those of! to find convenient Clebsch Gor­
dan matrices. For complex representations this problem has 
been discussed extensively by R. Dirl.2 Although the reason­
ing differs our results agree where they overlap. But apart 
from the different setting (noncomplex representations ver­
sus corepresentations, general subductions versus Clebsch 
Gordan series) the present approach, at least in the author's 
opinion, makes the principle from which these results 
emerge more transparent. It is simply the fact that every 
irreducible representation of a compact group is absolutely 
irreducible over one of the three fields: the reals, the complex 
numbers, or the quaternions. 

In the following the notation of I is used and (I.n.m) 
means Eq. (n.m) of!. For both G and g a complete set of t reps 
labeled by A and A, respectively, is assumed to be given. 

2. MULTIPLICITIES 

• The multiplicities m:A are the nonnegative integers ap­
pearing in the decomposition 

S~lg)tD:(x)S:lg) = I e1m:AD~(x); 

D: = t rep ofG, D~ = t rep ofg; G:Jg. (2.1) 

Every m~A is uniquely determined by the characters X ~ and 

X~· 
F#C: 

m:A = MxX~(x)X~(x)lMxX~(x)X~(x), 

F=C: 

(2.2) 

m~A =MxX~(x)*X~(x) =MxX~(x)X~(X)I*' (2.3) 

Equations (1.2.4), (1.2.6), and (1.2.3) imply trivial identities 
like 

m~+ =m~-, m~+t3+ =m~-t3-, etc. (2.4) 

Taking into account 

2X~± =X~ ±i¢:, (2.5) 

and using Eqs. (1.2.9-11), (1.2.18), one finds the following 
interrelations of multiplicities, some of which are less ob­
vious. 

mAa _ mAa _ mAa 
R- c- Q' 

mAt3 - mAt3 ± - lmAt3 
R- C -2Q' 

mAy - ImAy - ImAy 
R-2C-4Q' 

mBa - 2mB±a - 2m Ba 
R- C - Q' 

mBP - m B ±t3± + m B ±t3 + - mBP 
R - C C - Q' 

mBy - mB±y - imBy 
R- C -2Q' 

m~a = 2m[a = 4m~a, 

mrt3 - 2mr t3± - 2mr t3 
R- C - Q' 

mry - mry - mry 
R - C - Q' 

3. REAL SUBDUCTION MATRICES 

The matrices appearing in Eq. (2.1) for IF = R, 

(2.6) 

(2.7) 

(2.8) 

S~lg)=RAlg), (3.1) 

can be constructed combining the so-called projection tech­
nique3- 5 with a generalized Schmidt process.6

•
7 The basic 

idea of the projection technique is to write (2.1) in the form 

(3.2) 
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and to consider the columns of R Algi as (othonormalized) 
vectors, R A (x) as an operator acting onto these vectors, and 
[l: Ei) m~A R A (x) ] as a matrix representation of the operators 
R A (x). This alone would not be too advantageous but form­
ing the appropriate linear combinations the real vector space 
of dimension pAmA spanned by the columns of R Algi can be 
shown to carry not only a representation of the group g but 
also if its real group algebra AR (g). 

R A (a) = Mxa(x)R A (x), (3.3) 

(3.4) 

Now the elements of a t basis have an extremely simple ma­
trix representation, viz. 

(3.5) 

(3.6) 

the remaining matrix elements (t ¥=O) being related to (3.5, 
3.6) by Eqs. (1.2.1) and (1.2.2). The corresponding matrices 
acting from the left on the column vectors are 

E 1,1 IA - R A (eA ) 
jk - jk , 

F~A IA = R A (r;-), e.g., ]1,1 1f3 = R A (jf3). 

(3.7) 

(3.8) 

Equations (3.2)-(3.5) show that each column vector is an ei­
genvector of one of the projection operators E 1,1 IA and that 
the columns belonging to a certain A. may be partitioned into 
m~A groups, the members of the groups being transformed 
into each other under the action of the shift operators E Jt lA, 

j¥=k, and F~A lA, s¥=O. 
The peculiar feature of the shift operators F~A IA is that 

they commute with the projection operators EJt)A [cf. Eq. 
(1.3.8)]. Moreover the column vectors F~A IAv, s = 0, ... , pA 
- 1, obtained from a given column vector v by application 

of the operators F~A IA are mutually orthogonal and of the 
same norm as v. These facts may be used to construct sets of 
orthonormalized eigenvectors of a given projection opera­
tor; more generally, if one tries to find a complete set of 
orthonormalized eigenvectors by a Schmidt process, this 
process may be varied in such a way that in each step a pair 
or a quadruple of vectors is obtained instead of a single one. 
For A ¥=A there exist, however, even more commuting shift 
operators to implement this procedure. If A = B it is 

]B = R B(jB); (3.9) 

if A = r it is the operators I r, ] r, K r defined by 
-Qr JS,KT = (Era + lrb +]rc + krd)JS,KT 

= DJKR~T[a + ib + jc + kd] = DJKR~T[q], 
(3.10) 

[

a 

- -b 
R Q[a + ib + jc + kd] = -~ -i -~l -c 

-d 
(3.11) 

The operators (3,9, 3, 10) commute with all operatorsR A (X), 
XEG, and hence with all operators R A (a), aEAR (g). The exis­
tence of these operators indicates that the subduction matrix 
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can be adapted to the type of A whereas the operators (3.8) 
are responsible for its adaption to A.. To avoid linear depen­
dences members of both sets have to be combined into addi­
tional projection operators, the rest being used as shift opera­
tors. How this can be done is implicitly contained in Eqs. 
(2.7,2.8); it is stated explicitly in Eqs. (3.19)-(3.26) below. 

Before entering into the details of the construction of 
R A 1 g) let us first fix the notation. 

dimRAIgl=dimRA=pAmA; pA= l,pB=2,pr=4. 

Labeling of the elements of R A 1 g): 

row index JS: J = 0,. .. , mA 
- 1; 

S=O,. .. ,pA -1; 

(3.12) 

column indexjtm: j = 0,. .. , mA 
- 1; (3.13) 

t = 0,. .. , r1A - 1; 

m = 0,. .. , f.1AA - 1. 

Now let R A be a representation of g contained in R A ~g, i.e., 
m~A ¥= O. The rows of R Algi belonging to this A. are then ob­
tained according to the following scheme: 

(i) A subspace VA of the real vector space V consisting of 
all columns withpAmA components is characterized by a 
projection matrix pAA, i.e., 

(3.14) 

The matrices pAA are given below for all combinations of 
types. 

(ii) An orthonormalized basis of VA is constructed by 
means of a generalized Schmidt process. In each step a r1A_ 
tuple of vectors is constructed (cf. Ref. 7, Sec. 6A). Themem­
bers of a set are related by 

(3.15) 

the matrices S 1A being specified below, and there exist f.1AA 
such sets. One ends up with 

(3.16) 

orthonormalized column vectors v~;" (t = 0,. .. , r1A - 1; 
m = 0,. .. , f.1AA - 1). 

(iii) The rest of the columns belonging to A. is obtained 
applying the matrices E'; lA, Eq. (3.7), onto the vectors ~;" 
constructed in (ii), i.e., 

Am _ E 1,1 lA-Am . - 0 A 1 
Vjt - jO VOt ' J - "",m - . (3.17) 

The matrix R Algi is obtained by constructing successively 
the columns belonging to the different A. 's (with m~A ¥= 0) and 
collecting them into a square matrix. 

The matrices P AA and S 1A needed for the explicit con­
struction are given in the following equations: 

AA. = Aa: 

(i) pAa = EI:r. 
(ii) "Aa = 1: s~a = EIAla. 

(3.18) 

AA. = A/3: 
(i) pAP = Ei:!. 
(ii) T"f3 = 2: S~ = EIA)!3, S~ = ]IAIf3. 

(3.19) 

P. Kasperkovitz 9 



                                                                                                                                    

AA. = Ay: 

(i) pAy = E~y. 

(ii) -,Ay = 4: S ~y = E (A)y, S ~y = IIA)y, 

s~y = J(A)y, s~y = K(A)y. 

AA. = Ba: 

(i) pBa=E'~r· 

(ii) 'TBa = 2: s~a = EB, s~a = lB. 

AA = 8/3: 

(i) first p Bf3 = pBIl( +\ then pBIl = pBf3( -I, 

where pBf3( ±) = HEB +/B](B)f3 ]E~f3. 

(ii) 'TBf3 = 2: S ~f3 = E (B)f3, S ~f3 = IIBIf3. 

AA. = By: 

(i) pBy = ![EB _ IB/(B)Y]E~y. 

(ii) 'TBy = 4: s~y = E(BIY, s~y = I(B)y, 

s~y = J(B)y, s~y = K(B)y. 

AA. = ra: 

(i) pra = E~)a. 

(ii) r a =4: s;a=Er,Sia = _Ir, 

Sfa = _Jr,s[a= _Kr. 

AA =r/3: 

(i) pm=HEr +ir/(Tif3]E~)Il. 

(ii) r f3 = 4: S;f3 = Er, Sill = _ir, 

S? = _Jr, S[f3 = _Kr. 

AA. = ry: 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(i) pry = HEr + IrlWIY + JrJlTiY + KrKtr)Y]E~)Y. 
(ii) Jy_ 4. SrY-E-r sry- _Ir T-. 0- ,1- , 

S ff3 = -"] r, S f!3 = _ K r. 

4. COMPLEX AND QUATERNIONIC SUBDUCTION 
MATRICES 

(3.26) 

Next to be shown is how the complex and quaternionic 
subduction matrices, 

SA(g) - CA(g) SA(g) - QA(gl (4.1) c - , Q - , 

can be obtained from the real matrices R A (g). This step in­
volves only substitutions or linear transformations given by 
simple complex or quarternionic matrices. That no more ef­
fort is needed may be traced back to the fact that all irreduci­
ble representations of a compact group can be obtained from 
the real ones by successively extending H to C and Q (see Ref. 
6, Sec. 3). In the first step each irreducible representation of 
Cor Q type decomposes into two complex irreducible repre­
sentations of half the dimension which are inequivalent 
(complex conjugate) for A = 8 but equivalent (identical) for 
A = r. If C is extended to Q the representations C B + and 
C B - become equivalent whereas C r splits into two copies 
of the quaternionic representation Q r. 

Extending the reals has two aspects since both A and A 
may become reducible. The second effect is obviously harm-
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less: if a representation D A becomes reducible it only has to 
be transformed into a direct sum of its irreducible constitu­
ents. But this is a standard procedure because all that needs 
to be done in this case is to diagonalize elements of the group 
algebra which behave like the units of the extension field; 
which elements are appropriate is clearly indicated by the 
type of A. At first sight the reducibility of D A seems to pose 
more serious problems but in this case the subduction matrix 
may always be put int-o such a form that the same transfor­
mation decomposes both D A and SA ( g). This is not surpris­
ing for the following reasons: Every representation of G may 
be restricted to a representation of g which in turn may be 
transformed into a direct sum of irreducible representations 
by a matrix of the same dimension. If the representation field 
of A is fixed and only representations of g irreducible over 
this field are considered the elements of the subduction ma­
trix may be chosen from the same field. Therefore starting 
from the absolutely irreducible representations R A, C B + , 

Q r one ends up with direct sums of representations of g 
irreducible over H, C, and Q, respectively, if the correspond­
ing subduction matrices are real, complex, and quaternionic. 
If the representation field is an extension of the field from 
which the elements of the matrices D A ( = R A or C B + or 
Q r), SA Igl, and L tfj rnAAD A are taken, then the reducible 
ones of the matrices D A must be transformed into irreducible 
representations as described above. If, on the other hand, the 
representation field is a proper subfield of the field over 
which A is absolutely irreducible, the matrices D A ( = R A or 
C B + or Q r), S A (g), and L tfj rnAA D A can be "blown up" by 
one of the substitutions (1.2.1-2.3) resulting in larger matri­
ces of a peculiar structure. Up to minor changes, discussed 
below, this approach has already been taken into account in 
the construction of the real subduction matrice R A (gl. 

The details of the construction of the nonreal subduc­
tion matrices are best understood treating the three types of 
A separately. For A = A the real representation is absolutely 
irreducible so that only the possible reducibility of the repre­
sentationsA has to be taken into account. This is done by the 
following definitions: 

CA(gl = R A(gIC A, QA(gl = CA(gIQA, 

C~j(m'A 'j'('m' = 8AA,81J,8mm'C1", 

ca = I, 

Cf3 = _1_ ( 1 
v'2 -i 

1 ( -: cy=--
v'2 1 

-/ 

1 (1 
Q= v'2 j 

i) k . 

~) , 

i -i -1) -/ 

-I -I - I ' 

-i -i 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

It is easily checked that Cf3 transforms R (:[a + ib ] into a 
direct sum of a ± ib. Accordingly R f3 decomposes into C f3 + 

p, Kasperkovitz 10 



                                                                                                                                    

Ell C fJ - , the two representations being interlocked since they 
belong to t = 0, 1. The transformation Q fJ carries C fJ - into 
C fJ + to make explicit that these two representations are 
equivalent over Q. Similarly the matrix C Y transforms 
R Q [q] into a direct sum oftwo copies of C Q [q] which are 
further reduced to q Ell q Ell q Ell q by Q Y. Note that all this is in 
agreement with Eqs. (2.6). 

Next consider A = B. Here the subduction matrix 
R B( g) had been chosen in such a way that the irreducible 
representations R A appearing in the decomposition have the 
form indicated in Eq. (3.6). In fact Eqs. (3.22) ensure that the 
elements fila + ifJb are always represented by matrices 

(4.7) 

Likewise conventions (3.23) had been chosen to obtain repre­
sentations where 

R Y(eYa + iYb + jYc + kYd) = L EIlR Q[a + ib + jc + kd]. 

(4.8) 

This was necessary for real t reps but is inconvenient for 
complex ones because in general the matrix R B( g) does not 
commute with 

(4.9) 

Now we are looking for a real subduction matrix R B( g) com­
muting with I B, 

(4.10) 

because all matrices with this property are composed of sub­
matrices of the form R C and hence decomposed into two 
complex conjugate matrices by the same transformation 
which transforms IB into l: Ell [( + i) Ell ( - i)]. Such a matrix 
R B(g) is obtained from R B( g) by multiplication with a simple 
orthogonal matrix R, viz. 

RB(g) = R B(g)R, 

RAj,m,A 'j', 'm' = /j A.A. ,/jii' /jmm' r:m, 

r~m = 1, 

(4.11) 

(4.12) 

r~m = J.l', where J.l( = ± 1) is determined for each m 

from P BfJ,.ug; = zI~, 

Y _ { + I for t # 2 }. 
r'm - - 1 for t = 2 (4.13) 

It follows from (4.11-4.13) and (3.21-3.23) that the columns 
of Ii B( g) can be combined into pairs v, I BV; this implies (4.10). 
It is also evident from (4.11-4.13) and (3.6) that the represen­
tationsR A appearing in (3.2) if RB(g) is used instead of R B(g) 

are no longer t reps for A. = /3 ( - 1), r but have the following 
form: 

(4.14) 

(4.15) 
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The matrices R B, RB(g), and l: Ell mR AR A all commute with 
I B

, which is equivalent to saying that they are composed of 
submatrices of the form R c. The corresponding complex 
representations and subduction matrices are therefore easily 
obtained by replacing each submatrix R C [a + ib ] by the 
complex number a + ib. That is, ifthe columns of R B( g) are 
relabeled according to 

then 

A. = a,/3: t = O---+u = 0, v = ° 
t = l-+u = 0, V = 1, 

A. = r: t = O---+u = 0, v = ° 
t = l-+u = 0, V = 1 

t = 2-+u = 1, v = ° 
t = 3-+u = 1, v = 1, 

RB(g) -R c [CB+(g)] JR,Ajuum - Ru J,Ajum' 

(4.16) 

(4.17) 

This is the subduction matrix for the representation C B + ~g, 
where C B + is given by 

R ~R.J'R·(X) = R ~R' [C~/·(x)]. (4.18) 

The subduction matrix for the representation C B - is 

CB-(g) = [CB+(g)]*C B, (4.19) 

C~jum,Aj'u'm' = /jAA·/jii·/jmm'C~u" (4.20) 

ca = CfJ = 1, CY = R CU]. (4.21) 

The only purpose of the matrix C B is to bring the representa­
tion r into the form required for complex t reps, i.e., to en­
sure that 

CY(eYa + Fb + jYc + kYd) = L Ell CQ[a + ib + jc + kd]. 

(4.22) 

Since C B + is an absolutely irreducible representation of G 
the quatemionic subduction matrix is obtained from the 
complex one by multiplying it with a quatemionic matrix, 
which transforms CfJ- into CfJ + and decomposes CY. 

QB(g) = CB+(g)QB, 

Q~jum,A:;'u'm' = /jAA,/jii,/jmm,Q~u" 

(4.23) 

(4.24) 

Qa = QfJ+ = 1, QfJ- =j, QY = Q, Q see (4.6). 
(4.25) 

The simplest case is A = r. We recall the peculiar 
structure of R r, which indicates that this representation is 
essentially a quatemionic one: 

R ~R,J'R'(X) = R ~R' [Qf,.(X)]. (4.26) 

That the matrices R r (X) are composed of four-dimensional 
submatrices of the form R Q is equivalent to the commuta­
tion relation 

R r(X)R r(q) = R r(q)R r(X), XeG, qeQ, (4.27) 

(4.28) 

[cf. Ref. 7, Eq. (2.15)]. Because of (3.24-3.26) R r( g) is also 
composed of four-dimensional submatrices of the form R Q 

so that 

R T(g)jfr(q) = j[r(q)R rig), qeQ, (4.29) 

P. Kasperkovitz 11 



                                                                                                                                    

that is to say R T( g) is also essentially quaternionic. 

R ~~.~jlm = R 1, [Q ~1J~ ] (4.30) 

Since both the matrices R r (x), xeg, and the subduction ma­
trix R r( g) are transformed into quaternionic matrices of 
quarter dimension by the substitution R Q[q]-q so is the 
direct sum}; EI1 m~A R A (x), showing the same structure as R r 
and R rig) because of(3.2) and (4.27, 4.29). Now 

I EI1m~aR a(x) = I EI1 m~a[ EI14R a(x)], 

[EI14Ra(x)]·,,=RQ [Ra (x)] 
}I,} 1 /I' jOJ'O , (4.31) 

I EI1 m~13R 13 (x) = I EI1 m~13[ EI12R 13(x)], 

[ EI12R 13(x)]jl,}'I' = R~, [R fO,FO(X) + iR ft,j'O(x)] , 
(4.32) 

so that 

IEI1m~AQA(x) = I EI1m~aR a(x) EI1 IEI1mr!C13+(x) 

(4.33) 

Once the quaternionic matrices are known the correspond­
ing complex matrices are obtained by substituting 
q-+CQ[q] [see Eq. (1.2.3)]: 

C~T.J'T'(X) = C1-r, [Qf.,,(X)], (4,34) 

cng) - cQ [Qr(g) ] JT,Ajlm - Tt J,Ajm' (4.35) 

Equations (4.33-4.35) imply that the representations appear­
ing in }; EI1 m[AC A (x) are all complex t reps, Note that the 
representations,B + and,B - are interlocked since they be­
long to t = 0, 1. 

5. REDUCTION OF REAL PARAMETERS 

If one is only interested in complex subduction matrices 
it may seem a bit fancy to construct them via the real ones. 
However, the advantage of the approach considered here 

does not result from these details (which certainly may be 
substituted by equivalent ones) but from its spirit: If a matrix 
representation is chosen in type-adapted form the number of 
real parameters fixing the matrices is, on the average, only j 
the amount needed to fix a nonadapted representation. Like­
wise comparing the subduction from a type-adapted repre­
sentation to type-adapted representations with the subduc­
tion from a nonadapted representation to non adapted 
representations of the subgroup one finds again a reduction 
of real parameters, this time to as low as~, averaged over all 
types of subductions. To see how this comes about consider, 
for instance, the subduction A{3 ± . For non-adapted repre­
sentations C A is not real nor are C 13 + and C 13 - complex 
conjugate representations. If the projection method [based 
on the complex group algebra Ac (g)] is used to determine 
the rows of C AI g) belonging to,B ± one has to find m:f + 

+ m:f- ( = 2,uAP) orthonormalized vectors each having m A 

( = dim CAl complex components. In the method proposed 
here only ,uAP [ = m~/3 /2, cf. (3.16, 3.19)] orthonormalized 
vectors with m A real components have to be determined. In 
this case the ratio Tt / Nn is equal to !, if the numbers Tt and 
Nn are defined as follows: 

number of real parameters needed to fix 

the columns of C A Ig) belonging to A. 

= Tt, if both A and A. are t reps, 

= Nn, if neither A nor A. are t reps. 
(5.1) 

For AA. = A{3 ± a reduction by ! may be attributed to the 
fact that C A has been chosen to be real and C/3± to be com­
plex conjugate. A further reduction by ~ is due to the fact that 
the real and imaginary parts of the matrix elements of C AI g) 

belonging to,B + (or,B - ) are related by the matrix I (A)/3 

which is uniquely determined by A and,B up to the sign. 
Collecting these results for all pairs AA. we arrive at the 

following table: 

[
Ai Aa A{3± 

1/2 1/4 
Ar B ±a B ±,B± B ±r ra r,B± rr 

1/1 
average] 

5/9 
(5.2) 

Tt/Nn 1/4 1/1 1/2 1/2 1/2 1/2 

It furthermore should be noted that the conventions which 
are always necessary to fix a subduction matrix completely 
reduce here to a choice and/or calculation of real numbers. 
That the matrices and vectors used in this method are always 
real might be of interest for numerical calculations. More­
over if the ambiguity inherent to this kind of problem is re­
moved in the manner proposed here three related problems 
are solved in one run. Finally it is pointed out that the rea­
sons to use t reps are even more stringent if one is interested 
in the noncomplex representations. Here no true alternative 
seems to exist. In principle one could construct successively 
irreducible subspaces (of column vectors) starting from cy­
clic representations, i.e., from the linear hulls of sets 
I D (x)vlxeg I. In this approach the Schmidt process is the 
only mean to construct bases since at this stage no shift oper-

12 J. Math. Phys., Vol. 24, No.1, January 1983 

ators are known. But if one tries to pass from a nonadapted 
representation to linear combinations of these matrices suit­
ed to characterize invariant subspaces and to construct orth­
onormalized bases problems arise both for the real and the 
quaternionic representations. 

For the real representations this is due to two facts: (i) 
Contrary to the complex case there exist no simple rules how 
to obtain projection and shift matrices if the matrix represen­
tation of the group is nonadapted. (ii) If A. =fa, matrices com­
muting with the matrices representing group elements must 
exist but their form is not obvious for nonadapted represen­
tations. Thus if a representation A. (=fa) were given in nona­
dapted form one would have to find first the algebra of com­
muting matrices (which is isomorphic to C for A. =,B and to 
Q for A. = r), and then to transform it into a peculiar form by 
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an orthogonal transformation. For A = /3 this would mean to 
find a matrix transforming the matrix I ~on = R ~on (i'~) into 
the form (4.9); for A = y it were matrices R~on(q), q = i,}, 
that would have to be brought into the form (4.28). These 
orthogonal transformations transform the non adapted re­
presentations into t reps which in tum allow to define projec­
tion and shift matrices. But even then a systematic explana­
tion of the multiplicities in case AA = Ba, ra, r/3 is still 
missing until the algebra of matrices commuting with 
R A (X), XeG, has been determined. 

For quatemionic representations the situation is quite 
similar. A short reflection shows that the only linear combi­
nations of group elements which certainly leave a subspace 
invaraint, if it is invariant under the action of the group, 
must have real coefficients. Hence it is only the real group 
algebra which can be used to find the desired subspaces (cf. 
Ref. 6, Sec. 3). This algebra is not obvious for nonadapted 

13 J. Math. Phys .• Vol. 24. No.1. January 1983 

representations A =J: y. To recognize their type and the corre­
sponding t basis these quatemionic representations have to 
be transformed into real (A = a) or complex form (A = /3). 
Fortunately one need not worry about how to find the hyper­
unitary matrices needed for these transformations since qua­
temionic representations are hardly given from the outset. 

'P. Kasperkovitz. "Type·adapted representations of semi direct product 
groups", J. Math. Phys. 24, I (1983), preceding paper. 

2R. Dirl, On the uniqueness and reality of Clebsch Gordan coefficients. 1. 
Ordinary representations. II. Corepresentations (submitted for publica· 
tion). 

3S. Schindler and R. Mirman, 1. Math. Phys. 18. 1678 (1977). 
'P. M. van den Broek and J. F. Cornwell, Phys. Stat. Sol. B 90,211 (1978). 
'R. Dirl, J. Math. Phys. 20, 659 (1979). 
6P. Kasperkovitz, J. Math. Phys. 22, 2417 (1981). 
7p. Kasperkovitz and G. Kahl, J. Math. Phys. 22. 2404 (1981). 
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A new mathematical function connected with boundary value problems in 
kinetic transport theory 

Zhe-ming Liu 
Peking Feng-Yuan Institute of Mechanical and Electric Engineering. Building No. 66.2-8. Wan-yuan Lu 
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A new mathematical function connected with solving the Maxwell transport equation by 
applying the bimodal two-stream relaxing distribution is defined. This new function gives a more 
correct description of the direct nonequilibrium effect in gas molecular distribution on the 
macroscopic transferring of moment flux. In this paper, the differential equation satisfied by this 
function, its recurrence relations, and series or asymptotic expansions in various conditions are 
formulated. The degrees of approximations for these expansions are discussed. 

PACS numbers: 02.30. + g, 51.10. + y 

I. INTRODUCTION AND GENERAL CONSIDERATION 

The distribution function of monoatomic molecules for 
dilute gases can be described by the Boltzmann integro-dif­
ferential equation in the region of densities from the free­
molecule realm to the continuous medium (bicollisions 
among molecules still playa dominant role), i.e., 

Z + S'VJ= II I(f}; -jiIlvb db d€d SI' (1) 

where/is the distribution function of molecules, 
v = lSI - sl the relative velocity between two colliding mol­
ecules, b the parameter of collisions, and € the collisional 
azimuthal angle. 

The right-hand side of Eq. (1) is called a collisional 
term. Because of its nonlinearity, to solve Eq. (1) under cer­
tain boundary conditions is very difficult. Fortunately, in 
many real problems of physics one is interested not in distri­
bution function itself, but in its some lower moments, e.g., 
gas density, temperature, flow velocity, shear stress, and 
heat flux. In order to obtain correct values of these macro­
scopic quantities, the moment method, model equation, and 
variational method are widely used. The moment method is 
a powerful instrument, especially for the nonlinear prob­
lems. Multiplying both sides of the Boltzmann equation (I) 
by the velocity function tP (S) and integrating it for all possible 
velocities of molecules, one gets the following Maxwell 
transport equation or moment equation: 

:t I tP (slf d s + V rJ stP (slf ds = iJ.tP, (2) 

where 

The differences between Eqs. (1) and (2) consist in that 
for the latter there is a possibility of not necessarily having to 
find the precise value of the distribution function point-by­
point, but to put stress on computing the moments of the 
distribution function in some average sense. It is possible to 
construct a suitable form for the distribution function in ad-

vance in order to approximately solve Eq. (2) in the sense of 
correct macroscopic parameters of gases. However, this 
functional form must be determined in such a way that it can 
represent the physical nature of the problem, reflect the ef­
fect of soid boundaries, and make the mathematical treat­
ment easy to carry out. Based on this idea, a bimodal two­
stream relaxing distribution suggested by the author in Ref. 
1 can be introduced here according to the following 
considerations: 

(i) The distribution function should be discontinuous 
along the normal direction with respect to the surface of 
solid walls. This is particularly important for rarefied gases 
and (or) in strong nonlinear problems or near the solid 
boundaries within the region about the mean free path of 
molecules. 

(ii) In the nonlinear cases, there must be a bimodal char­
acter emerging in the distribution function of the molecules. 
For example, this character needs to be accounted for in the 
problems like shock wave structure, heat transfer with large 
temperature gradiant, etc. 

(iii) The influence of solid boundaries on the distribu­
tion function of gas molecules should be divided into two 
parts: The first is direct influence, i.e., reflected molecules 
from solid walls directly reach certain place in the gas field 
and constitute some part oflocal molecular ensemble. Mole­
cules of this part may be described by the relaxing term for 
the distribution function of reflected molecules from corre­
sponding solid surfaces, which is to be decayed exponential­
ly along their trajectories due to molecular collisions. The 
second is indirect influence, i.e., contributions to the distri­
bution function of molecules in that same place from colli­
sions between the reflected molecules and the other gas mol­
ecules and from many-times collisions among the molecules 
which had been collided (directly or indirectly) with reflect­
ed molecules in their histories. 

The above division is very important, because the na­
ture of the velocity distribution between these two sets of 
molecules is quite different, in particular for the nonlinear 
cases. 

Therefore, the total distribution function of gas mole­
cules can be described by the following formula, which is 
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called the bimodal two-stream relaxing distribution: 

(3) 

where r is a radius vector in a gas field, r w,, r W2 the original 
radius vectors of gas molecules on the surfaces of walls, nw , 
nw, the normals of two oppositely faced solid surfaces I 

towards the gas, S the velocity of a gas molecule, fw, (s,r w, ) 
and fw, (s,r w, ) the distribution functions of reflected mole­
cules from the solid boundaries, a 1 (r), a2(r), a3(r), and a4(r) the 
space influence functions (indirect) of solid boundaries, and 
iI(s,r)J2(s,r) may be selected as local Maxwellian distribu­
tion which contains several other space functions deter­
mined by moment equations. 

By applying this distribution, formula (3), to the heat­
conduction problem between two parallel plates, much bet­
ter results than existing theory have been obtained in Ref. 1, 
including the total heat transfer and the temperature vari­
ation along the axis perpendicular to the walls. 

In order for the problem to be solved, the number of 
moment equations is required to be equal to the number of 
unknown space influence functions. 

For summational invariants of collisions, namely, the 
mass m, moment ms, and energy m 1 S 1212 of a molecule, the 
.:1~s =0 (s = 1,2,3,4,5), which is independent of what the 
form of the distribution function is. Thus, for the steady 
problems there are five moment equations which may be 
selected: 

(4) 

However, besides that, at least one moment equation 
should be constructed, in which the velocity function ~i(S) 
differs from above five collisional invariants ~s(S). 

For the ~i(S) selected, the .:1~i(S) is evaluated easily for 
the Maxwell molecules by (2), which possesses the following 
general form: 

.:1~i(S) = ICiknla ik , (5) 
k 

where Cik are constants depending on the dynamics of colli­
sions between molecules, 1/aik the moment flux in gases, 
which are constants in steady problems, n = Sf d S the num­
ber density of molecules per unit volume. 

Thus, the additional moment equations have the fol­
lowing form: 

VrJ~~i(tifd~ = ~Cikn/aik' (6) 

Introducing (3) into (6) and (4), one gets a system of 
nonhomogeneous ordinal differential equations of first order 
together with five algebraic equations for the space-influence 
functions. 
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Integrating these simultaneous differential equations, 
we obtain a new mathematical function indicating the direct 
effect of solid boundaries, where reflected molecules have 
Maxwellian distribution, on transferring the moment flux in 
gases. This new function is defined as 

Ln (x,a) = -- e - U - xlu du, i"" un + 1 , 

o u + a 
(n = 0,1,2,3, .. ·) (7) 

where x and a are two non-negative real numbers. 
It is clear from the above discussion that the parameter 

11 a characterizes the flux of macroscopic physical quantities 
of gases which in tum represents the degree of nonlinearity 
of the physical problem. When 1/ a approaches zero, the net 
effect of solid boundaries on the distribution of gas molecules 
tends to zero, i.e., Ln (x, 00 )-+0, because the system between 
solid boundaries and gases is in the complete thermal and 
(or) dynamic eqUilibrium states. But when 1/a is raised up 
approximately to infinity, the direct effect of solid bound­
aries on the distribution function of gas molecules becomes 
extremely strong and the physical flux gets very large. The 
increase of 1/a from zero to a large value shows that the 
physical problem changes from the linear one into the non­
linear one. 

Similarily, in the transport problems of other neutral 
particles function (7) may also appear. 

2. GENERAL PROPERTIES 

The function Ln (x,a) satisfies the following differential 
equation and recurrence relations: 

itLn a3Ln 
ax--- [x+(n-l)a]--

ax4 ax3 

a2Ln aLn 
+ (n - 1) ax2 + 2a ax - 2Ln = 0, (8) 

aLn 
-=-L ax n-I' 

2Ln = axLn_ 4 + [x + (n - l)a]Ln _ 3 

+ (n - I)Ln_ 2 - 2aLn _ l • 

(9) 

(10) 

Formula (9) is the simple result of the differentiating 
definition of Ln(x,a). Integrating both (n - I)Ln _ 2 (x,a) and 
(n - l)aLn _ 3 (x,a) by parts and introducing them into (10), 
one is in a position to prove that (10) is an identity. Equation 
(8) is the direct result of (9) and (10). 

When a = ° in (7), 

Ln (x,O) = i"" une - u' - xludu==.!n (x). (11) 

It can be seen from this that the case discussed by 
Abramowitz et al.2.3 (i.e., I n (x)) is a special case of Ln (x,a). 

The main differences in physical meaning between I n (x) 
and Ln (x,a) may be explained as follows: 

The function I n (x) represents the direct contribution of 
reflected molecules from soid boundaries to the local mass, 
momentum, and energy of gases, i.e., collisional invariants, 
carried by the reflected molecules themselves. I n (x) appears 
in the equations of conservation (4), which are independent 
of whether the moment-flux exists or not. However, Ln (x,a) 
energes after integrating Eq. (6), which denotes the existence 
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of moment-ft.ux in gases. Therefore, Ln (x,a) is really connect­
ed with kinetic transport problems, which answer the ques­
tion what part of the direct contributions of reft.ected mole­
cules from solid boundaries to the transferring the moment­
ft.ux in the local gas field is. As the moment-ft.ux becomes 
extremely large, Ln (x,a) is in the same mathematical form as 
In(x), but their physical meaning is quite different as shown 
by the above discussion. 

3. EXPANSIONS FOR VARIOUS a ANDx 
A. The case of large a and small x 

First of all, it can be pointed out that for all the values of 
a one finds following identity, proved by induction: 

un + lIn 
__ =(_a)n+I __ + L(-a)n~v. (12) 
u+a u+a s~o 

Then, we have 

i
oo un + I 2 

Ln(O,a) = __ e~u du 
o u + a 

i
oo 1 n 

= ( - a)" + I -- e ~ u' du + L ( - a)" ~ sJs(O). 
o u+a s~o 

( 13) 

Obviously, in the induction of (13), interchanging the 
order between integration and summation is permisible. 

The asymptotic expansion of the first term on the right­
hand side in (13) can be obtained by expanding the denomi­
nator of the integrand in descending powers of a4

: 

roo_l_e~u2 du =~! J...=-..!..[r( r+ 1). (14) 
)0 u + a 2 r ~ 0 ar + I 2 

Thus 

L (Oa)=(-a)n+I~~ (-1)' r(r+l) 
n , 2 r~O ar + I 2 

+~i(_a)"~sr(S+1 ) 
2 s~ 0 2 

=(-a)"+I~ ! (-:+11' r(r+l). (15) 
2r~n+1 a 2 

Let us now turn to discussing the expansion of Ln (x,a). 
This can be obtained by use of the Laplace transform. The 
Laplace transform of Ln (x,a) is defined as 2" (Ln I = foe ~ tx 
xLn(x,a)dx, i.e., 

.2"(L
n

l = rOOe~txrooun+1 e~u2~xIUdudx. (16) 
)0 )0 u + a 

Since (7) is absolutely convergent, the order of integra­
tion above may be changed. Consequently, 

.Y(Lnl = ___ u e~u2du. 1100 1 n + 2 

t 0 U + a u + lit 
(17) 

Formula (17) can be further rewritten by using (12) for un + 2/ 
(u + lit): 

.2"( L nl=(-1)"-1_1°O e~u2du 
t n + 3 0 (u + a)(u + lit) 

- s~~ t( _l)n~s+ I t n_
1
$+ t Ls(O,a). (18) 

When a > 0, L~ I(O,a) in (18) is convergent. The first term in 
the right-hand side in (18) may be changed: 
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( _ 1)" _1_ roo 1 e ~ u2 du 
t n + 3)0 (u + a)(u + lit) 

= (-1)n+ I ~ 1 L~I(O,a) 
a t n+2(t-lIa) 

+ (-1)"~ 1 roo e~u2 duo 
a t n+2(t-lIa))0 u + lit 

(IS 

The series expansion of the integral on the right-hand 
side in (19) is4 

roo 
___ e ~ u' du 

)0 u + lit 
00 (- 1)'!!¢(r + 1) + In t I 

= r~o r!t 2r 

+1T1/2! (-2)' (2C 
r~O 1.3.5 ... (2r + l)t2r+ I 

where¢(r+ 1)= -Y+~;;'~I(lIm),¢(I)= -y,and 
y = 0.577 215 .. · is Euler's constant. 

Substituting (19) and (20) into (18), we have 

.2"(Ln 1= (- 1)"+ I ~ 1 L~I(O,a) 
a tn+2(t - lIa) 

1 [00 (- 1 n !¢(r + 1) + In t I 
+(-1)"- '" ------

a r~o r!t 2(r+l l+n(t-lIa) 

+ 1T1/2 ~ ( - 2)' 
r~O 1·3·5 ... (2r + l)t 2(r + II + n + I(t - 11 a) 

- s~~ I( -1)"~S+ I tn~ls+ I Ls(O,a). (21) 

Using the theorem of convolution 

(22 

and 

2"~I[ 1 ] =ex1a, 
t - lIa 

(23 

we deduce 

2"~ I [ 1 ] = aN (eXla _ Nf I~(x/a)p). (24 
t N(t-lIa) p~op! 

In the same way, using (22) and 

2"~t[ lnt ] = ex1a(ln (lIa) + Et(x/a)) , (25 
t- lIa 

we obtain 

JI'~I[ lnt ]=aN[exla(ln(lIa)+EI(x/a)) 
tN(t - lIa) 

- ~.t::!(x/a)'(¢(s+ 1)-lnX)], 

(2t 

where EI(x/a) = r~/a (e- v Iv) dv is the exponential integral 
Its series expansion takes the formS: 

00 ( l)n 
EI(x/a) = - y - In(x/a) - L ---- (x/a)". (2~ 

n~ Inn! 

In the deduction of (26) attention has been paid to the 
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following integral5
: Thus, (26) may be further rewritten as 

(28) 
,2"-1 [ In t ] = aN f ~ (x/a)'(tP(s + 1) -In x). 

tN(t-l/a) s=N s! 
(30) 

Formula (26) may be further rewritten to simplify the 
procedure for getting the expansion of Ln(x,a). Using the 
serious expansion of EI(x/a) and the definition ofthe func­
tion tP(s), we deduce that 

Substituting (24), and (30) into (21), we obtain following 
expansion for Ln (x,a) in the case of large a and small x: 

Ln(x,a)= i _I_I(_x)n-sLs(O,a)+(_a)n+IL_l(O,a) 
s= - dn - s). 

00 1 
ex1a(ln(I/a)+EI(x/a) = L -(x/a)S(¢(s+ I)-lnx). 

s=o s! 

00 1 00 1 
X L -(x/a)' + (-It L-iln+s(x), (31) 

s=n+2S! s=2as- 1 

(29) where 

rI ()= ~ (-In~¢(r+I)+¢(2r+n+s+I)-lnxJ 2r+n+s 
un+sx ~ X 

r = 0 r!(2r + n + s)! 

+ 17'1/2 f (- 2)' x2r+n+s+ I. 
r=O I.3.5.·.(2r+ I)[(2r+n+s+ I)!] 

(32) 

We shall discuss the order of approximation of the expansion (31) in detail as follows: 
Because the series (32) in an alternating convergent one, if we sum its terms through K, the remainder satisfies 

R ~ + I) < I ( _ 1 t + I !¢(K + 2) + ¢(2K + n + s + 3) - In x X2K +n + s+ 2 

n,. (K + I)!(2K + n + s + 2)! 

+ 17'1/2 (- 2t+ I X2K+ n+s+ 31. 
I.3·5 .. ·(2K + 3)[(2K + n + s + 3)!] 

(33) 

Therefore, (31) may be expressed as 

n 1 00 1 
Ln(x,a) = L --( - x)n-sLs(O,a) + (- at+ IL_I(O,a) L -(x/a)' 

s = - dn - s)! s = n + 2 s! 

+(-It~ (-1)' a2r+n+I~¢(2r+n+s+I) (x/afr+n+s +(_W~_I_R(K+I) 
~ I ~ (2 + +)1 ~ s - I nn + .• r = 0 r. s = 2 r n s . s = 2a 

+(- wi (-1)' a2r +n+ I I!tP(r+ 1)-lnxJ f (x/a)2r+n+s 
r = 0 r! s = 2 (2r + n + S)! 

K (2)r 00 (x/a)2r + n + s + I + ( - 1 t17'1/2 L - a2r + n + 2 L -'----'-----
r=oI·3·5 .. ·(2r+ 1) s=2(2r+n +s+ I)! 

(34) 

Since the last two terms in the right-hand side of (34) 
can be calculated precisely, only the first four infinite series 
in (34), namely Ls(O,a) in the first term, L_I(O,a) in the sec­
ond term, and the third and fourth terms, remain to be dis­
cussed in estimating the error of approximation. 

Therefore, when we take r = Kin Ls(O,a) and L_I(O,a), 
the remainder in the first and second terms is to be estimated 
as 

First, we shall determinate the error of approximation 
of the first and second terms in (34), which is caused by 
Ls(O,a) having the asymptotic expansion 

Ls(O,a) = (- a)'+ I~ f (-:}!' r( r + 1). (35) 
2r=s+1 a 2 

Observing that the series in (35) is an alternating one 
and summing its terms through r = K (which must be larger 
thans + 1), we find that the remainder of series (35) satisfies 

R(K+I)<I(_I)s+K~ K r(.!!-.)I. 
LJO,a) 4 aK - S + I 2 (36) 

17 J. Math. Phys., Vol. 24, No.1, January 1983 

< 1 i (- It +K.!!-.r(K/2)_I_ (x/a)n-s 1 
s = - I 4 (n - s)! aK 

- n + I 

+(-It+K.!!-.r(K/2) 1 f ~(x/a)SI 
4 aK 

- n + I s = n + 2 s! 

(37) 

Second, we discuss the third term in (34), which may be 
rewritten as 
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K ( 1 )r 00 (x/a)2r + n + s 
( - l)n I --- a2r + n + 1 I t/J(2r + n + s + 1) "":""--'---

r ~ 0 r! s ~ 2 (2r + n + s)! 
K ( l)r 1 ( / )2r + n + s 

=(-ltI--=,-a2r+n+1If/!(2r+n+s+l) x a +R~+ll(x,a), 
r ~ 0 r. s ~ 2 (2r + n + s)! (38) 

where the remainder is 

R ~ + ll(x,a) = 1(- 1)n i l...=...!.[ a2r +n + 1 [( _ r + 1 + t + 1 + ... + 1 ) (x/a)2r+ n + 1+ 1 
r ~ 0 r! 2r + n + I + 1 (2r + n + 1+ I)! 

( 1 1) (x/a)2r+n+I+2 
+ -r+ 1+!+1+···+ +-----

2r + n + 1+ 1 2r + n + I + 2 (2r + n + 1+ 2)! 

( 
1 1 1) (x/af+ n+I+3 

+ -r+ 1+t+1+···+ + +-----
2r + n + I + 1 2r + n + I + 2 2r + n + I + 3 (2r + n + I + 3)! 

( 
1 1 1 1) (x/a)2r+n+I+4 ] I 

+ -r+ 1+t+1+···+ + + + + ... 
2r + n + 1+ 1 2r + n + 1+ 2 2r + n + 1+ 3 2r + n + I + 4 (2r + n + 1+ 4)! 

= 1(-I)ni-(-_I_l' a2r +n+1[(_r+ 1 +!+1+ .. '+ 1 )(eX1a _ 2ry+I~(x/aY') 
r ~ 0 r! 2r + n + I + 1 p ~ 0 p! 

1 (x/af+ n+I+2 (1 I) (x/a)2r+n+I+3 
+ + +-----

2r + n + 1+2 (2r + n + 1+ 2)! 2r + n + 1+2 2r + n + 1+3 (2r + n + 1+ 3)! 

( 
1 1 1) (x/a)2r+n+I+4 ] 1 + + + + ... 

2r + n + 1+ 2 2r + n + 1+ 3 2r + n + I + 4 (2r + n + 1+ 4)! . 
Owing to the relations 

(x/a)2r+ n + 1+ 2 

2r + n + 1+ 2 (2r + n + 1+ 2)! 
x/a (x/a)2r+n+l+l (1 I) (x/a)2r+n+I+3 

= 2r + n + 1+2 (2r + n + I + 2)! 2r + n + 1+ 2 + 2r + n + 1+ 3 (2r + n + 1+ 3)! 

( 
x/a )2 (x/a)2r+n+l+l x/a (x/a)2r+n+I+2 

< + , 
2r + n + 1+ 2 (2r + n + 1+ 2)! 2r + n + 1+ 3 (2r + n + 1+ 3)! 

( I I I) (x/afr+n+I+4 

2r + n + 1+ 2 + 2r + n + I + 3 + 2r + n + 1+ 4 (2r + n + 1+ 4)! 

(39) 

( 
x/a )3 (x/a)2r+n+l+l ( x/a )2 (x/afr+n+I+2 x/a (x/afr+n+I+3 

< 2r + n + 1+ 2 (2r + n + 1+ 2)! + 2r + n + I + 3 (2r + n + 1+ 3)! + 2r + n + I + 4 (2r + n + 1+ 4)!' 
... < ... 

.'.<"., (40) 

we have 

R ~+ ll(x,a) < I( - I)nrto (~/l' a2r +n+ 1 {t/J(2r + n + I + 2l(~/a - 2r-;t,: l~x/aY') 

[ 
x/a ( x/a )2 ( x/a )3 ] (x/a)2r+n+l+l + + + + ... 

2r + n + 1+ 2 2r + n + I + 2 2r + n + 1+ 2 (2r + n + 1+ 2)! 

[ 
x/a ( x/a )2 ( x/a )3 ] (x/a)2r+n+I+2 + + + + ... 

2r + n + 1+ 3 2r + n + 1+ 3 2r + n + 1+ 3 (2r + n + 1+ 3)! 

+ [ x/a +( x/a )2 +( x/a )3 + ... ] (x/a)2r+n+I+3 + ... }I 
2r + n + 1+ 4 2r + n + I + 4 2r + n + 1+ 4 (2r + n + 1+ 4)! 

= I(-Itt (-,tl' a2r+n+l[f/!(2r+n+I+2)(~/a_2ry+I~(x/aY') 
r~O r. p~O p. 

I (x/a)2r+n+I+2 I (x/a)2r+n+I+3 
+ + -------~----!..----

2r + n + 1+2 - x/a (2r + n + 1+ 2)! 2r + n + 1+ 3 - x/a (2r + n + 1+ 3)! 
1 (x/a)2r+n+I+4]1 + +~ 

2r + n + 1+4 - x/a (2r + n + 1+ 4)! 

< 1 ( - I)nrto (~/l' a2r + n + 1 [t/J(2r + n + I + 2)(~/a - 2r-;t,o+ l~x/aY') 
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+ 1 (e"la _ 2r+ I I + 1~(x/aY')] I 
2r + n + I + 2 - x/a p = 0 p! 

< I( - Itrto (~/)' a2r +n+ I ["'(2r + n + 1+ 2{e"la - 2r-;t.o+/~!(x/aY') 

+ 1 (e"la _ 2r I + 1~(x/aY')] I 
2r + n + I + 2 p = 0 p! 

= 1(- l)n rto (~/)' a2r + n+ 1",(2r + n + I + 3{e"la - 2r-;t.: I~! (x/aY') I. (41) 

Finally, we are going to deal with the fourth term in (34), which may be estimated as follows: 

(42) 

In the deduction of (42) we have used (41), in which we have taken 1=3. 
Summing (37), (41), and (42), we obtain the total error of approximation for the expansion of Ln (x,a) under the condition 

oflarge a and small x, i.e., 

E(k + 11,(1 + II < 1(- It H-!Kr(K/2) 1 e"la 
L.(x.al 4 aK - n + I 

K ( l)r ( 2r + n + I 1 ) 
+ ( - Itr~o--T a2r

+ n + 1",(2r + n + 1+3) e
x1a 

- p~o p! (x/aY' 

1 ( 2K+n+31 ) + ( - 1)" +K+ I , a2K + n + 3(!",(K + 2) + ",(2K + n + 6) -In x) e"la - I ,(x/aY' 
(K + 1). p=o p. 

+(_I)n+K+I1TI/2 2
K

+
I 

a2K+n+4(eXla_2KI+4~(x/aY')I, 
1.3.5 ... (2K + 3) p=o p! 

(43) 

where r = K and s = I are taken in the expansion (31) for Ln(x,a). 

B. The case of large a and large x 

In this case, the denominator in the integrand of (7) can be expanded in descending powers of a. Then, the asymptotic 
expansion of Ln(x,a) is 

K ( l)rl oo 
( l)K+ Il oo un+K+2 Ln(x,a) = I---- un+r+le-u'-xIUdu+ - e-u'-xludu 

r = 0 ar + I 0 aK + lOU + a 

IK (-1)' J ()+R(K+II() = --- n + r + I X L x,a . 
a r + 1 • r=O 

(44) 
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The remainder in (44) satisfies 

R t+ II(x,a) <-I- Jn +K+ I (x). 
n aK+ I 

(45) 

The asymptotic expansion of I n + K + I (x) has been studied by Abramowitz et al. 2
,3 Thus, it is not necessary to discuss it 

further here. 

C. The case of small a and small x 

First of all notice that for small a the following expres­
sion can be obtained by use of (12): 

Ln(O,a) = ( - at + I [! (-/)' {!¢(r + 1) + In ~}a2r 
r~O r. a 

+rrI/2! (-2)' a2r+l] 
r~01.3·5···(2r + 1) 

+!I( -at-T( s+ 1), (n =0,1,2,3,. .. ). 
s~ 0 2 

(46) 

We now tum to discussing the expansion of Ln(x,a) for 
small a and small x by use of the Laplace transform. 

Formula (17) may be rewritten as 

2' ! Ln J = ~ ('oo U un + I e - u' duo 
t Jo u + 1/t u + a 

(47) 

Using (12) for un + I/(U + a), we obtain 

2'!LnJ=(-at+I~(OO U rU'du 
t Jo (u + 1/t)(u + a) 

1 n Sooo us + I , +-L( -at- s e- u duo 
t s ~ 0 0 U + 1/t 

(48) 

With the aid of(12) for uH I/(U + 1/t), we have 

2'! L J = ( - at + I~ (00 U e - u' du 
n t Jo (u + 1/t)(u + a) 

+ ( - l)n + I I an - s_l_ (00 e - u' du 
s~o t S+2Jo u + 1/t 

+ storto( _It-
r
a

n
-

s 
ts_lr+Jr(O). 

(49) 

Since the value of t in the integrand of 

( _ at + I (00 ~ u e - u' du (50) 
Jo t (u + 1/t)(u + a) 

(51) 

20 J. Math. Phys., Vol. 24, No.1, January 1983 

U sing the transforms 

2' -- = - (¢(K + 1) -In x), _I [ In t] x
K 

t K + I K! 
(52) 

2'_I[~(OO 1 e-u'du] = [JK_I(X), 
tKJo u + 1/t 

we obtain 

Ln(x,a) 

= (- at+ IL_I(O,a) + (- W+ I Ian-s[Js+ I (x) 
s=o 

+~ I I(_I)n-ran-s_l_,xs- rr(r+l ),(53) 
2 s~Or~O (s - r). 2 

where 

L_I(O,a) = ! (-I)'{~¢(r+l)+ln~}a2r 
r~O r! 2 a 

+ rrl/2 f ( - 2)' a2r + I. 
r~O 1·3.5 ... (2r+ 1) 

(54) 

Because the first two terms on the right-hand side in (53) 
are alternating convergent series, if we sum all its terms 
through r = K, the remainder of Ln (x,a) in (53) satisfies 
R (K+ II 

Ln(x,a) 

< 1(-at +l[ (-It+I{~¢(K+2)+ln~}a2K+2 
(K + I)! 2 a 

+rr1/2 - a2K +3 ( 2)K+ I ] 

1.3·5 ... (2K + 3) 

+( - W+I Ian - s[ (-It+1 
s~o (K + I)! 

X2K+S+ 3 

X !!¢(K+ 2) + ¢(2K+s+4)-lnxJ ---­
(2K+s + 3)! 

+ rrl 12._-'----'-______ _ (- 2)K+ I X2K +S +4
] I 

1.3·5 ... (2K + 3) (2K + s + 4)! 

D. The case of small a and large x 

From (7) and (12) we have 

Ln(x,a)= __ e-u'-xludu 
Sa

oo un+ I 

o u +a 

(55) 

= (- at (""_u_e-u'-xlu du + i (- ar-sJs(x). 
Jo u + a s~ I 

(56) 
Since a is small and x is large and the relation 

e- a1u <_u_<1 (57) 
u+a 

holds for 0< u < 00 , we obtain the following two approximate 
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expressions for Ln (x,a) by taking e - alu and 1, respectively, 
in place of u/(u + a) involved in the first term on right-hand 
side of (56): 

Ln(x,a) = (- a)nJo(x + a) + i (- at-sJs(x), (58) 
s= 1 

n 

Ln (x,a) = L ( - a)n - sJs (x). (59) 
s=o 

21 J. Math. Phys., Vol. 24, No.1, January 1983 

The errors of these two approximate expressions both satisfy 

I Liu Zhe-ming, Acta Mech. Sinica 3, 259 (1979). 
2M. Abromowitz, J. Math. Phys. 32, 188 (1953). 
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3M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, 
Appl. Math. Ser. SS (U.S. Govt. Printing Office, Washington D.C., 1966). 

'E. T. Goodwin and J. Staton, Quart J. Mech. 1, 319 (1948). 
'Y. Kourganolf, Basic Method in Transfer Problems (Oxford U.P., London, 
1952). 
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Null field solutions of the wave equation and certain generalizations 
c. B. Collins 
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3Gl Canada 

(Received 10 November 1981; accepted for publication II August 1982) 

The ordinary wave equation in 3 + I dimensions DtP = 0, 

0_ - a Z I at Z + a Z I axz + a Z I ayZ + a Z I azz 

admits null field solutions, characterized by VtP-VtP = 0, 

VtP·VtP = - (a¢> lat f + (atP lax)z + (atP layf + (atP laz)Z 

with VtP¢O. It is shown that the general null field solution can be obtained from a knowledge of 
the "time-transported" solutions, i.e., those solutions of the form tP = t - tP(x,y,z), where tP 
satisfies both Laplace's equation and the eikonal equation in a Euclidean space. We obtain all 
second-order scalar wave equations offormf(tP,tP/, tP;i;}tP ;i;}) = ° (in arbitrary dimension and 
involving a single potential function tP ) for which the above technique applies. These equations are 
shown to be equivalentto the family of quasilinear third-order equations V tP-V(DtP ) + K (DtP )z = 0, 
where K is a constant. Some null solutions of these equations are considered, and related to 
previous works. The results are applied to determine all shear-free hypersurface-orthogonal null 
geodesic congruences in Minkowski space-time, and some brief comments are made on complex 
solutions and on more general wave equations. 

PACS numbers: 02.20.Jr, 04.20.Jb 

I. INTRODUCTION 

Friedlander l
•
z has considered simple progressing wave 

solutions of the scalar wave equation in 3 + 1 dimensions. 
For future reference and for the sake of brevity, we shall 
discuss the more general situation in n-dimensional Min­
kowski space-time, in which there are coordinates (Xi) 
(i = 0,1,2, ... ,n - 1;n>2) such that the metric is 

dsz = _ (dxO)Z + (dxl)Z + (dxZ)Z + ... + (dxn - I)Z 

= 1Iij dxidx), (1.1) 

where 1Iij = diag( - 1, + I, + 1, ... , + I), with O<i,j<n, and 
where the summation convention is employed on repeated 
indices. The wave equation is then 

az n-I az 
DtP = 0, 0 = - (axO)Z + U~I (axU)Z 

or 

tP/=o (1.2) 

in tensorial form, a semicolon indicating a (covariane) deri­
vative with respect to the metric (1.1). The simple progress­
ing wave solutions of(1.2) have the special form ¢> = Uf(S), 
where f is arbitrary and S is not identically constant; they 
generalize the well-known d' Alembert solution, in which 
U = I and S = XO ± Xl (and, for example, n = 4). Substitut­
ing tP = Uf(S) in (1.2) and recognizing thatfis arbitrary leads 
to the overdetermined system of partial differential equa­
tions 

(
as )2 n - I (as)2 'i VS-VS = ~ - -0 + L ---;; = ~S;iS' = 0, 
ax u~ I ax 

(1.3a) 

2VS-VU+ UDS=~2S;iU;i+ US/=O, (1.3b) 

and 

(1.3c) 

where the operators V and 0 are with respect to the metric 
(1.1). In his original paper, 1 Friedlander considered the spe-

cial case (with n = 4): U = V(XI ,xZ, ... ,xn - I) and 
S = XO - 7(xl,xZ, ... ,xn - I). Then the system (1.3) becomes 

V7-V7 = I, 

2Vr-VV + VV2
7 = 0, (1.4) 

VZV=o, 
where the operators V and V2 are with respect to the (n - 1)­
dimensional Euclidean metric 
ds2 = (dx I f + (dX2)2 + ... + (dxn - 1)2 induced on the hyper­
surfaces [XO = const). However, in his later book,2 Fried­
lander shows that, somewhat surprisingly, the general solu­
tion of the system (1.3) can (for n = 4) be reduced locally to 
the special case (1.4), in the sense that knowledge of the gen­
eral solution of (1.4) is sufficient to determine implicitly the 
general solution of (1.3). We now provide a description of 
Friedlander's procedure, which will be of use later on. How­
ever, this description will be in tensorial notation, thereby 
rendering the procedure more transparent; it will automati­
cally involve the generalization from 4 to n dimensions. 

The procedure involves a change of coordinates. By 
(1.3a), we have as lax°=l=O, for otherwise the equipotential 
hypersurface {S = const) would not have a well-defined 
normal (corresponding to the existence ofa caustic). We can 
therefore consider the coordinate transformation 

XO=S(xO,xl,x2, ... ,xn-l) } 

XU = XU (a = 1,2, ... ,n - 1) 

{
XO = 7(X0,x I,x2, ... ,xn - I) 

<=> (1.5) 
x a =X a (a = 1,2, ... ,n - I) 

the right side of(1.5) being determined by the inverse func­
tion theorem. We now examine the (symmetric) metric 
ds2 = gij dX idX } in the new coordinate system. Here gij 

= 11 kl (axk I ax i) (axl lax i), and hence 
n-I 

ds2 = - (7idXr + L (axa)2, (1.6) 
a=l 

where 7i =aT/ ax i. Moreover, the inverse of gij is 
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gij = 11k/(aX il axk) (ax j I ax/) and hence 

.. a a 21"a a a "-I a a 
g" -ax-i -aX-j = - -1"-0- -ax-o -ax-a + a~1 ax a axa . 

(1.7) 

The expression (1. 7) follows either by direct inversion of gij 
from (1.6), or more simply from the facts that 

00 _ kl axo axo _ vs VS - ° 
g -11 axk axl - . -

by (1.3a), and 

~ _ kl ax ° ax a _ kl as ~a 
- 11 axk axl - 11 axk I 

= 11ka as = ~k as = as. 
axk a axk axa' 

yet from (1.5), 0= axolaxa = 1"0 as laxa + 1"a' implying gOa 
= - 1"a;"'O' Since 1 = axolaxo = 1"0 as laxo, (1.3a) is equi­

valent to 
"-I 

L ~ =1 (1.8) 
a=1 

(1.9) 

We now reexpress Eqs. (1.3) with respect to the new coordi­
nates Xi. Equation (1.3a) becomes 

"ij as as. = O¢:}. 00 = 0, 
5 ax' ax' g 

which is identically satisfied (by virtue of the fact that the 
new coordinates have been adapted to this condition). For 
any quantity U we have 

DU= ~(gij~ -detgkl au) 
~ _ detgkl aX' ax' 

or, using (1.9), 

1 "- I 
DU=- L (1"oUaa - U01"aa -21"a UaO), (1.10) 

1"0 a = 1 

where a subscript i denotes partial differentiation with re­
spect to Xi. It follows that Eq. (1.3c) is equivalent to 

"-I 

L (1"oUaa - UOT'aa - 2T'a UaO ) = 0. (1.11) 
a=l 

Substituting S for U in (1.10) and noting that So = 1 and 
Sa = ° shows that Eq. (1.3b) is equivalent to 

"-I 

L (21"a Ua + U1"aa) = 0, (1.12) 
a=l 

and, writing V = UT' 0' this becomes 
"-I 

L (2T'a Va + V1"aa) = 0, (1.13) 
a=1 

where use is made of the fact that 1:: :: \ T' a 1" Oa = 0, which 
follows from (1.8). Differentiating (1.12) with respect toXO, 
and eliminating T' aa between the resulting expression and 
Eq. (1.11), results in 

"-I 

L (TOUaa + 2T'Oa Ua + UT'Oaa) = 0, 
a=1 
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which, with V = UT'o, shows that Eq. (1.3c) is equivalent to 
n-I 

L Vaa =0. (1.14) 
a=l 

In summary, we have two functions Vand T' which satisfy the 
equations 

n-I 

L ~ =1, (1.8) 
a=l 

n -I 

L (2T'" Va + VT'aa) =0, (1.13) 
a=l 

and 
.-1 

L Vaa =0, (1.14) 
a=l 

where a subscript a denotes partial differentiation with re­
spect toX a (a = I,2, ... ,n - 1). These equations are of pre­
cisely the same form as those ofthe special subsystem (1.4), 
except that now the operators V and V 2 refer to an associated 
(n - 1 )-dimensional Euclidean metric 
(dX 1)2 + (dX 2)2 + ... + (dX· - 1)2. Therefore, once the spe­
cial subsystem (1.4) is solved, we have the solution in the 
general case. However, in making the appropriate transcrip­
tion, it must be remembered that T is a function of X 0, as well 
as of X" (a = 1,2, ... ,n - 1), and that V = U1"o' 

This technique involving a change of coordinates is 
powerful, and it is natural to explore the extent to which we 
can apply it in order to obtain the most general solution of a 
system of equations from a very special solution. The above 
example, viz., system (1.3), involves three partial differential 
equations for two unknowns U and S. For simplicity, we will 
now consider instead systems involving two partial differen­
tial equations for one unknown ¢J. In Sec. II, we start by in­
vestigating "null field" solutions of the ordinary wave equa­
tion in 3 + 1 dimensions. These are solutions ¢J of the wave 
equation O¢J = 0, which also satisfy the equation 
V¢J·V¢J = 0; they are of physical importance since they are 
linked to pure radiation fields and provide, in accordance 
with special relativity, the limiting case at which distur­
bances can propagate. In order to generalize the investiga­
tion, we then consider in Sec. III null field solutions of cer­
tain generalized wave equations in n-dimensional 
Minkowski space-time. Specifically, we prove the following 

Theorem 1: Suppose that in n-dimensional Minkowski 
space-time (n;>2), in which there are coordinates (Xi) 
(i = 0,1,2, ... ,n - 1) such that the metric is 

ds2 = _ (dXO)2 + (dx1f + (dX2)2 + ... + (dx" - 1)2, 
(1.15) 

the partial differential equation 

f(¢J,¢J/,¢J;i;j¢J ;i;j) = ° 
admits null field solutions ¢J satisfying 

V¢JoV¢J ===¢J;i¢J;i = 0, V¢J¢O. 

(1.16a) 

(1.16b) 

Further, suppose that the restriction (1.16a) is nontrivial and 
that the system (1.16) admits a time-transported null field 
solution of the form ¢J = XO - T'(XI ,x2, ... ,x. - I) in some coor­
dinate system (Xi) in which the metric is ofform (1.15). If the 
system resulting from the coordinate transformation 
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XO = tP (XO,X I ,x2, ... ,Xn - I) } 

xa = xa (a = I,2, ... ,n - 1) 

{
XO = 1"(X0,x I ,x2, ... ,xn - I) 

q xa = xa (a = I,2, ... ,n - 1) 

in Euclidean (n - 1 I-dimensional space with metric 
(dX 1)2 + (dX 2)2 + ... + (dX n - 1)2is explicitly independent of 
Xu, and is of precisely the same form as the system obtained 
from (1.16) with the substitution tP = XO - 1"(XI ,x2, ... ,xn - I), 
in the Euclidean (n - I)-dimensional space with metric 
(dX I)2 + (dX2)2 + ... + (dxn - 1)2, then the partial differential 
equation (1. 16a) is equivalent to the third-order quasi linear 
equation 

D (DtP ) + K (DtP )2 = 0, 

where K is a constant, and D =.itP;i denoted differentiation 
along the normals to the null hypersurfaces ! tP = const]. In 
this case, the general solution of the system (1.16) is obtaina­
ble from the most general time-transported solution. 

In Sec. IV we apply our results to the construction of all 
shear-free hypersurface-orthogonal null geodesic congru­
ences in Minkowski space-time. Various remarks are made 
in Sec. V, relating the results of the present work to those of 
previous articles, and concerning generalizations to the com­
plexified case and to the case where the function fin (1.16a) 
depends not only on tP, tP;i;i and tP;i;jtP ;i;j, but also on some 
covariantly constant vector field A i. 

Throughout, some familiarity with the geometric tech­
nique due to Friedlander 1.2 and extended by Collins4

•5 would 
be helpful. In this technique, a Gaussian coordinate system 
adapted to the equipotential surfaces is introduced, and cur­
vature line parameters, related to the extrinsic curvature of 
the equipotential surfaces, are employed. Thus the entire de­
scription of the associated differential equation is in terms of 
coordinates which are geometrically significant. 

II. NULL FIELD SOLUTIONS OF THE ORDINARY WAVE 
EQUATION 

We first consider the concepts of a null field solution 
and of a time-transported solution. Suppose that we are deal­
ing with the ordinary wave equation in 3 + I dimensional 
Minkowski space-time, i.e., n = 4 in Sec. I. A scalar func­
tion tP on a region of space-time which is not identically 
constant (VtP¥O) locally defines a system of hyper surfaces 
I tP = const 1, the normal at any point to which is (parallel to) 
VtP. Because of the indefinite metric, this normal vector, at 
any point, satisfies one ofthe conditions VtP-VtP > 0, 
VtP·VtP <0, or VtP-VtP = 0. If there is an open set in which 
V¢>-V¢> -Oand V¢> #0, wecall¢>anullfield (cf. Friedlander,z 
who has a different sign convention for the metric). In this 
case the null hypersurfaces I tP = const J are generated by a 
(unique) null geodesic congruence2 (cf. Lemma 2.1 of Ref. 6). 
At any point, the normal to such a hypersurface is both orth­
ogonal and tangent to the hypersurface, and tangential to a 
null geodesic in the generating congruence. 

Given any Killing vector,7 ~, a null geodesic con­
gruence with tangent vector k is invariant under the action of 
~ if and only if the Lie derivative 
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£~ k = Oq[ ~,k] = Oqki;jt j - ti;jk j 
= ° (2.) 

(cf. Ref. 6). We will say that a nuH-geodesic congruence is 
time-transported if it is invariant under the action of a tim~ 
like translational Killing vector. Such congruences were 
considered previously by Cox8 and Collins,6 by whom the: 
were called "time-invariant." However, this latter nomen­
clature suggests time independence, and so here we prefer 
the terminology of time transportation. Following Ref. 6, 0 

¢> is a null field, ¢>;i satisfies ¢>;i¢>;i = 0, from which 
¢>;i;j¢> ;i = 0, and hence ¢>;j;itP ;i = 0, i.e., the congruence tan 
gent to ¢>;i is a hypersurface-orthogonal affinely parame­
trized null geodesic congruence. If the congruence is time· 
transported, we say that the null field ¢> is time-transportee. 

We can choose coordinates (Xi) in (1.1) such that ~ = a/ax 
and, by (2.1), tP;i;jt j = 0, which implies that there is a con 
stant b and a real function 1"(XI ,X2,X3) such that 

¢> = bxo - 1"(x 1 ,x2 ,x3
), 

and, since tP is null, 

V1"-V1" = b 2, 

(2.:) 

(2.) 

where the operator V refers to the metric induced on any 
hypersurface orthogonal to~, ds2 = (dxlf + (dX 2 )2 + (dx 3

). 

As in Sec. I, we may assume that b = a¢> / axo # ° (in order b 

obtain a well-defined normal to the hypersurface 
! ¢> = const 1), in which case 

1 = <p /b = XO - r(x l ,x2,x3
), 

where r = T / b. Thus, instead of ¢> we can consider 1 satisf~ 
ing 

1i1;i=0, 
1 =xo - r(x l ,x2,x3

), (2.·) 

i.e., without loss of generality, b = I in (2.2) and (2.3). In tie 
following, we assume that (2.4) holds, and drop the barrec 
notation. Note that time-transported solutions, satisfying 
(2.4), are not time-independent. 

If tP is an arbitrary null field solution of the ordinary 
wave equation, then 

¢>;i¢> ;i = 0, 

¢>;i;i = 0. 

Ifwe were to consider special simple progressive solutions ,f 
the ordinary wave equation (1.2) ofform ¢> = f(S), withfarb­
trary and S not identically constant, i.e., if in Sec. I we ha~ 
U==l, then equations (1.3) become 

VS-VS= 0, 

DS=O, (2.;) 

which is equivalent to (2.5). The general solution of (2.6) i 
therefore obtainable first by considering the special time­
transported solutions ofform S = t - 1"(x,y,z), where 
(t,x,y,z)-(xO,X I ,X2,X3

), so 

VrV1" = 1, 

'i/21" = 0, (2.') 

where the operators V and 'i/2 refer to the three-dimensionl 
Euclidean space with metric dx2 + dy2 + dz2, and then b~ 
performing the coordinate transformation technique de-
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scribed in Sec. I. Now the general solution of (2."7) is4 

7 = Ix + my + nz + A, 

where I, m, n and A are constants satisfying 
12 + m 2 + n2 = 1. Therefore, the general solution of (2.6) is 
given by solving [cf. (1.5), (1.8), (1.10), and (1.11) with U =1) 

t = I (S)x + m (S iY + n (S )z + A (S ) 

forS,where I(S),m(S),n(S),and A (S) are/unctions satisfy­
ing f2 + m 2 + n2 = 1. Each hypersurface [S = const J is a 
plane, but the orientation of the planes [S = const J is the 
same only if the functions I, m, and n are constant. In the 
general case, the waves are plane-fronted, whereas in the 
case where I, m, and n are constants, the waves are plane­
fronted with parallel rays, or pp waves. 9 

This result generalizes that of Ref. 6, in which only 
time-transported solutions were considered. It is itself ex­
tended to space-times of arbitrary dimension in Sec. V. 
Some brief comments on the global aspects of the result are 
made in Sec. IV. 

III. PROOF OF THEOREM 1 

We begin by invoking the change of coordinates (1.5). 
We note that putting U = ¢ = X ° in (1.10) yields 

. _ 1 n-I 

O¢=¢/=- L 7 aa , 
70 a~ I 

whereas A. . . A. ;i;j = (A. . . A. ;i);j _ (A. . . ;j)A.;i = _ A. .;j.A.;i 
'f';I;;'f' 'f';I;j'f' 'f';l;) 'f' 'f';} ;1 If' 

= - D (O¢), whereD =,,¢ ;i. This latter result maybe reex-
pressed in the coordinates (X i) as 

¢;i;j¢ ;i;j = - (O¢ );i¢;jgij = - (O¢ );pgP0 

n-1 7 a (1 n-I ) - L ...!!.-- ~ 7 
P~ 17o axP 70 a~1 aa 

_ ~ nil nil(7P7aap _ 7P70P7aa) 

70P~la~1 70 ?a 
1 - ro V7·V(V27), 

where the operators V and V2 refer to the Euclidean (n - 1)­
dimensional space with metric 
(dX 1)2 + (dX2)2 + ... + (dxn - If, and we have again used 
the fact that ~~:; \ 7 a 70a = 0, as follows from (1.8). The par­
tial differential equationf = 0, with ¢;i¢ ;i = ° in force, re­
duces to 

f(¢'¢i:i,¢i}¢ ;i;j) = Oqf(Xo, _ V
2
7, _ VrV(V

2
7)) = ° 

, " 70 ro 
(3.1) 

together with 
n-I 

L r; = 1, 
a=l 

which is equivalent to (1.l6b). On the other hand, if we seek 
time-transported solutions with ¢ = XO - 7(X I ,x2

, ••• ,xn 
- I), 

the equations (1.16) reduce to 

f(xO - 7(x l,x2, ... ,xn -I), - V27, - VrV(V27)) = 0, 
(3.2) 

together with VrV7 = 1, where here the operators refer to 
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the Euclidean (n - 1 )-dimensional space with metric 
ds2 = (dx1f + ... + (dxn - 1)2. IfEq. (3.1) is to be independent 
of XO, and of precisely the same form as (3.2), then, writing 
/ = /(u,v,w), we have a/ /au = ° and writingf = g(v,w), we 
obtain 

g( _ V
2
7, _ VrV(V

2
7)) = Oqg( _ V27, _ V7.V(V27)) 

70 ro 
=0 

for all 7o, and the partial differential equation (1.16a) is 

g(O¢, - D (O¢ )) = 0. 

Ifv_O¢~O, we writey = w/v2 and h (v,y) g(v,w), in which 
case 

h (_ V
2
7, _ V7.V(V

2
7)) = Oqh ( _ V27, _ V7.V(V

2
7)) 

7o (V27)2. (V27)2 

= ° (3.3) 

and the partial differential equation is 

h (o¢ _ D (O¢ )) = 0. 
, (O¢)2 

(3.4) 

If h is independent of its second variable then, since by as­
sumption/is nontrivial, (3.4) implies that O¢ = c, a con­
stant. In that case (3.3) shows that V27 = - c, and so 
7 71alP - 7 71Pla - (7 71P )la - 7 la71P lalP - lalP - lalP lalP 
= - V7·V(V27) = 0, where a vertical stroke (I) denotes co-

variant differentiation with respect to the metric induced on 
a hypersurface [XO = const J. Since this metric is positive­
definite, we have 71alP = 0, and, afortiori, V27 = 71a la = 0, 
i.e., c = 0, which contradicts the assumption that O¢~O. 
Thus, ifO¢~O, Eq. (3.3) shows that [VrV(V27)/(V27)2] 
= I ( - V27/ 7 0) = I ( - V27) for some function I, and for all 

7o, whence I is constant. Thus either 

O¢ ° 
or 

D (O¢ ) + K (O¢ )2 = ° with O¢~O, 

where K is a constant. It is clear that K 'fO, since otherwise 
VrV(V27) = 0, which as we have seen, requires O¢ =0. We 
now combine the two possibilities, and Theorem 1 is 
proved. • 

IV. SHEAR-FREE HYPERSURFACE-ORTHOGONAL 
NULL GEODESIC CONGRUENCES IN MINKOWSKI 
SPACE-TIME 

As previously shown,6 a shear-free hypersurface-ortho­
gonal null geodesic congruence in (four-dimensional) Min­
kowski space-time with metric 

ds2 = _ dt 2 + dx2 + dy2 + dz2 

is tangential to a null vector k for which there exists a real 
functiong(t,x,y,z)~Osuch thatki = g;j>g;ig;i = O,g;i;jg'j = ° 
and (g/)2 = 2g;i;jg'i;j = - 2g;i(gjj);i' i.e., 

Vg·Vg = g;ig'i = 0, 

(Og)2 = - 2Vg'V(Og). (4.1) 

The general time-transported solution to (4.1) is, without loss 
of generality, of form g = t - 7(X,y,z) with 
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(V1f = 1, 

(V21f = - 2V-r-V(V2r), (4.2) 

where in (4.2) the operators V and V2 refer to the three-di­
mensional Euclidean space with metric dx2 + dy2 + di2, 
and whose solution is6

: 

(i) r = Ix + my + nz +A, where I, m, n, and A are 
constants satisfying 12 + m2 + n2 = 1 (the expansion scalar 
g;i;i = - V 2r of the congruence vanishes, and the hypersur­
faces 19 = const J are null hyperplanes) or 

(ii) r = ± [(x - X I)2 + tv - YI)2 + (z - zlf]1/2 + A, 
whenxl,Yt> Zl' and A are constants (the expansion scalar 
g/ = - V 2r is 2/(r - A ), and the hypersurfaces 
19 = const J are null cones). 

Now system (4.1) is a particular case of the class of sys­
tems referred to in Theorem 1, and therefore the general 
solution of (4.1) is given by solving for g: 

(i) t = I (g)x + m(glY + n(g)z + A (g), (4.3a) 

where I (g), mig), n(g), and A (g) are functions satisfying 

12(g) + m2(g) + n2(g) = 1, 

(ii) t = ± I [x - xl(gW + [y - y.(gW 
+ [z - ztlglf J 1/2 + A (g), (4.3b) 

where x I (g), Y I (g), z I (g), and A (g) are functions. 
We therefore have 
Theorem 2: The most general shear-free hypersurface­

orthogonal null geodesic congruence in Minkowski space­
time is generated by (the normals to) either light cones ema­
nating from a single line (t,x,y,z) = (tl(g), xl(g)'YI(g), zl(g)), or 
a system of null planes. 

This theorem appears to be fairly well known (cf. the 
comments in Ref. 10, where it is incorrectly stated), but as far 
as I am aware there is no well-known standard reference to a 
proof. The theorem may be deduced as a corollary to Kerr's 
theorem,8.11-15 which provides the form of the most general 
analytic shear-free null geodesic congruence in Minkowski 
space-time; some further comments relating to this can be 
found in Ref. 6. For a global application of the theorem, it is 
necessary that the equipotentials of gin (4.2) not intersect, 
which can only be achieved by requiring that the null planes 
all be parallel in (4.3a), i.e., that I, m, and n are constants, and 
by choosing either sign in (4.3b) and requiring that the curve 
(t,x,y,z) = (tl(g), xl(g),YI(g), zl(g)) be timelike (otherwise the 
equipotentials intersect or the set of null geodesics is not a 
congruence filling space-time, or both). 

v. MISCELLANEOUS RESULTS 

In this section we consider special cases and generaliza­
tions of Theorem 1. 

(i) Dt,b = 0; n = 4: The results of Sec. II follow immedi­
ately. 

(ii) Dt,b = 0; n = J; This is a special case of (i) above, 
where we now write (xO,X I,X2) = (t,x,y), so 

a 2t,b a2t,b a2t,b 
--+-+-=0 

at 2 ax2 ay2 

26 J. Math. Phys .. Vol. 24. No.1. January 1983 

and 

-( ~ r + (~~ r + ( ~~ r = O. 

We may solve this by complexifying, writing t = iz. 
Then 

a
2

t,b + Jlt,b + J2t,b = 0 
ax2 ay2 az2 

and 

This system was solved earlier,4 using different methods. 
The general solution was given by t,b _const or by solving 

1 (t,b )x + m(t,b lY + n(t,b )z = ¢(t,b ), 

where I (t,b ), m(t,b ), n(t,b ), and ¢(t,b ) are functions satisfying 
12(tP ) + m2(tP ) + n2(tP ) = 0, and I, m, and n are not all zero. 
Substituting back for t in favor of z, we have 

I (tP )x + m(tP lY - in(t,b )t = ¢(tP ). 

Supposen(tP )=0. ThenatP lat = OandtP = tP (x ± iy),i.e·,tPis 
not real. If, however, n(tP )¥O, we obtain 
t = l(tP)x + iii(tP lY +A (tP), where! = - il In, iii = - imln, 
A = i¢/n, and f2 + iii 2 = 1, and real solutions for 
tP = tP (t,x,y) will exist. These solutions are in agreement with 
those of the special case of (i) above, when n = 3. 

(iii) Dt,b #0; n = 4: We have 

Vt,b·V(OtP) + K (Dt,b )2 = 0, 

VtP·VtP=O, (5.1) 

with DtP¥O. For a time-transported solution, without loss of 
generality of form tP = t - r(x,y,z), where 
(t,x,y,z)-(xO,X I,X2,X3

), we have from (5.1) 

V-r-V(V2r) + K (V2rf = 0, 

V-r-Vr = 1 

with V 2r¥0. If K #0, the only (real) solutions to this are5 

(a) K = 1, and T is the a-eliminant of 

r = I (a)x + m(alY + n(a)z + A (a) 

and 

0= I'(a)x + m'(alY + n'(a)z + A '(a), 

where 12(a) + m2(a) + n2(a) = 1 and at most one of l'(a), 
m'(a), and n'(a) is identically zero; 

(b)K =!, and 

r = ± [(x - xi + (y - yd 2 + (z - ZI)2]1/2 + A, 

where x I' YI' Z J, and A are arbitrary real constants. 
If K = 0, then it follows either from the discussion in Ref. 5 
or from the proof in Sec. III that the equipotentials 
IT = const J are planes, and that V2r=0, a contradiction. 
Therefore, the general solution of the system 

D (OtP ) + K (DtP )2 = 0, 

VtP·VtP = 0 

with DtP¥O is given (when n = 4) by: 
(a) K = 1, and t,b is specified implicitly as thea-eliminant 
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of 

t = I (a,rp )x + m(a,rp lY + n(a,rp )z + A (a,rp ) 

and 

al am an aA 
o=-x+-y+-z+-, 

aa aa aa aa 

where 12(a,rp ) + m2(a,rp ) + n2(a,rp ) = 1 and at most one of 
allaa, amlaa, and anlaa is identically zero; 

(b) K = !, and rp is specified implicitly by 

t = ± I [x - xM W + [y - yM lY + [z - zM lY)1/2 
+A (rp), 

where x M ), yM ), z M ), and A (rp ) are arbitrary (real) func­
tions. 
The case (b) corresponds to the "expanding" solution (ii) of 
(4.2). 

(iv) n = 2: We first show that Drp =0. For a time-trans­
ported solution without loss of generality of form 
rp = t - 'T(x), where (t,x) = (X°,xl), we have 

Vrp.V(Drp) + K (Drp )2 = 0=> d'T d 3'T 
dx dx3 

+K(~)2 =0 
dx2 

and 

( 
d'T)2 Vrp·vrp = 0=> dx = 1. 

Clearly (5.2a) is a consequence of (5.2b), and so 
'T = ± x + X O' where X o is a constant; thus 

(5.2a) 

(5.2b) 

V2'T = d 2'T I dx2 = ° implies Drp =0. Using Theorem 1, we 
have that the general solution in the case n = 2 is given by 
solving t = ± x + xo(rp ) for rp, i.e., that rp = rp (t ± x), and we 
recover the well-known d' Alembert solution. This result can 
also be obtained by the coordinate substitution u = t + x, 
v = t - x in the general two-dimensional problem. 

(v) n > 2; K.;; l/(n - 2) or D (Drp ) = 0; kinematic quanti­
ties: Our aim here is to show that under certain circum­
stances, viz., when K.;; l/(n - 2) or when D (Drp ) = 0, it nec­
essarily follows that Drp = ° and that the general null field 
solution is given by solving 

XO = 1M )xl + 12(rp )x2 + '" + In _ I (rp )xn - I + A (rp ) 

forrp, where la(rp) (a = 1,2, ... ,n - 1) and A (rp) are functions 
satisfying l:~ :: \ I! (rp ) = 1. This generalizes the result of Sec. 
II. 

We first employ a decomposition of the covariant deri­
vative, analogous to that used in the pseudo-Riemannian 
manifolds of general relativistic cosmology.6.16 Let 
'T = 'T(xt,x2

, ••• ,xn - I) with Vr-V'T = 1, so 

'TlalP = ()af3 = uaf3 + [l/(n - 2)] ()hap , 

where ()aP' uaf3' and () are respectively interpreted as the 
"expansion tensor," the "shear tensor," and the "volume 
expansion scalar" of the congruence normal to the (n - 2)­
surfaces I XO,'T = const). They satisfy the conditions 
()ap'Tlp = 0, ()aP = ()f3a' () a a = (), U af3 'T lf3 = 0, U af3 = U f3a , and 
~ a = 0. The tensor haf3 is the "projection tensor" into the 
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tangent plane at each point on a (n - 2)-surface, i.e., haP 
= gaf3 - 'Tla 'TIP' haf3 = hf3a , h a a = n - 2, and haph al' 
= 8~, where gaP is the metric induced on a hypersurface 
I XO = const ). We define also the shear scalar U by 
2~ = uap~P, u>O, and note that uaP = O¢::>u = 0. In ana­
logy with the situation in general relativity, 16 we may derive 
equations which specify the propagations of () and U ap along 
the normal congruence. Thus 8 ap =() ap 11' 'TIl' = 'Tlalp 11' 'TIl' 

= 'Tll'lal f3 'Tll' = ('Tll'la'TI1')lf3 - 'Tll'la 'Tll'lp' Since 'TIl' 1"11' = 1, it 
follows that 8 ap = - () af3 () a 13 and hence 

8= -()af3()aP= -![1/(n-2)]()2+2~). (5.3a) 

Also haf3 = ~af3ll' 'TIl' = (gaf3 - .1"1a 'Tlf3 )11' 'TIl' = 0, so it follows 
that iJaf3 = ()af3 - [l/(n - 2)] ()haf3 , i.e., 

. _ l' 2 () 2~h 
uaP - - ual'u 1'1 - -- uafJ + -- af3' 

n-2 n-2 

from which 

(~r = iJaf3~f3 = - ual'ul'f3~fJ - [4/(n - 2)]()~. 
(5.3b) 

If we seek null field solutions of the equation 
D (Drp ) + K (Drp )2 = 0, then, following the procedure of 
Theorem 1, we substitute rp = XO - r(xt,x2, ... ,xn - I), to ob­
tain 

8 +K()2 = 0. 

Combining this with (5.3a), we obtain 

[K - l/(n - 2)]()2 - 2~ = 0, 

(5.4) 

(5.5) 

from which we may conclude that if K.;; l/(n - 2), then 
U = () = 0. Similarly, it follows from (5.3a) thatifD (Drp) = 0, 
then U = () = O. Thus, if either D (Drp ) = 0 or K.;; l/(n - 2), 
we have U = () = 0, so 'TlalfJ = ° and hence 
1" = IIXI + 12X2 + ... + In _ I xn - I + A, where la 
(a = 1,2, ... ,n - 1) and A are constants satisfying 
l:~ :: \ I! = 1. Applying the procedure of Theorem 1, it fol­
lows that the general solution is given by solving 

XO = 1M )xl + 12(rp )x2 + ... + In _ I (rp)xn - I + A (rp ) 

forrp, where la(rp) (a = 1,2, ... ,n - 1) and A (rp) are arbitrary 
functions satisfying l:~:: \ I! (rp ) = 1. 

It is of interest to note also that in the special case n = 4 
[without the restrictions K.;; l/(n - 2) or D (Drp ) = 0 in 
force], ual'ul'p~P is identically zero, so Eq. (5.3b) simplifies, 
and the propagation oft 5. 5) requires either () =0 or () ¥ ° and 

(K - !)K() 2 
- 2~ = 0, 

where use is made of (5.3b) and (5.4). Using (5.5), it follows 
that either () =u==Oor() ¥O,u==O,andK = !,oru==!I() I ¥O 
and K = 1. These situations were discussed in Sec. II and in 
case (iii) above. 

(vi) Generalization to include a covariantly constant vec­
tor field: Suppose that the function/in Theorem 1 is allowed 
to depend on some covariantly constant vector field A ;. The 
simplest such dependence would involve/being a function 
not only of rp, rp/, and rp;;;jrp ;;;j, but also of rp;;A ; and A;A ;. 
However, since A;;j = 0, (A;A tj = 0; in other words, A;A ; 
is constant. Hence we shall suppose that/is a function of rp, 
rp;;;i, rp;;jrp ;;;j, andrp;;A;. Let A = a; alax; = b; alax;, where 
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X i and Xi are coordinates as in Sec. I. Then ai = b j ax il ax j, 
b i = a j axilax < and ¢;iA i = aU. Thus, iff = f(¢,¢/, 
¢;i;j¢ ;i;j, ¢;iA i) with af la(¢;iA i)#O, then the technique of 
coordinate transformations discussed in Sec. I will be valid 
provided 

f(Xo _ V
2
r _ VrV(V

2
r) aO) = ° 

, , J ' 
ro TO 

<=>j{xo - r, - V2r, - VroV(V 2r),aOro) = ° (5.6) 

for arbitrary r ° and for the expressions in (5.6) to be explicitly 
independent of XO (here we have used the fact that if 
¢ = t-r, 

¢;iA i = b O 
_ baarlaxa 

= ajar/ax j - aaariax a = aOro). 

Arguing as in the proof of Theorem 1, it follows that either 
O¢ -0, or thatfis independent of its third argument, or that 
(5.6) gives 

VrV(V2r) -I ( - V
2
r 0) _/( _ u2 0 ) ---'------'- - ,a - v r,a ro (V2r)2 ro 

for allro' Writing w = ulv for v#O, we define 
m(w,v) = I (u,v), so m( - V2r/aOro, aO) = m( - V2r/aOro, 
aOro) for allro (provided aO#O), and hence m 
= m( - V2r/aOro)' In this case the original partial differen­

tial equation is of form 

V¢oV(O¢) = m (~) , 
(O¢)2 ¢;iA I 

where m = m(w) is an arbitrary function. If, however, 
aO = 0, then 

¢;iAi=O 

(which has null field solutions only if A iAi ;;.0, i.e., A i is not 
time1ike). Finally, if/is independent of its third argument, 
we must have V2r/aOro = const, and the original partial dif­
ferential equation is of form 

O¢ + AoV¢ =0. 
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This last case is of considerable interest, since it belongs to a 
particular class of scalar wave equations considered by 
Friedlander2 in his book. 
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"Deformation theory" is a branch of mathematics which studies the geometry of dependence on 
parameters of geometric and physical systems. Material arising from Lie group theory and 
mathematical physics (e.g., in the study of asymptotic behavior of angular momentum) is applied 
to study the asymptotic behavior of certain linear filters depending on parameters. A 
mathematical machine which unifies many of these problems will be developed in this series. 

PACS numbers: 02.30. + g, 02.1O.Sp, 84.20.Ma, 84.30.Vn 

1. INTRODUCTION 

This paper and those to follow are a sequel to Ref. 1. 
There I showed that the theory oflinear input-output sys­
tems and filters is closely linked to certain aspects of har­
monic analysis and the Lie group theoretical explanation of 
the properties of the Special Functions of mathematical phy­
sics.2.3 Now, these Special Functions often come with pa­
rameters naturally attached. It is known from earlier work4

,5 

that certain phenomena involving the parameters involves 
what is called in the mathematical literature the theory of 
deformations of Lie groups and their linear representations. 
The theory oflinear input-output systems depending on pa­
rameters has also been developed in the last ten years.6-8 It is 
the purpose of this paper to bring these two streams together, 
and apply them to some relatively concrete problems and 
formulas involving the asymptotic formulas for the Special 
Functions of mathematical physics. 

Much of the work in this paper will be motivated by one 
example, the following formula in Whittaker and Watson 
(Ref. 9, p. 367): 

Jo(t) = lim Pn (.!...-) , 
n--oo n 

(Ll) 

where t-Jo(t), x-Pn (x) are the usual Bessel functions and 
Legendre polynomials. On the mathematical physics-Lie 
group theory side, it is known that the right-hand side oft 1.1) 
(for finite n) is the matrix element of a one-parameter sub­
group of the rotation group SO(3,R ) in the spin n-representa­
tion, while the left-hand side is the matrix element of a one­
parameter subgroup of a semidirect product ofSO(2,R ) and a 
two-dimensional abelian subgroup, a solvable Lie group 
which is isomorphic to the group of rigid motions of R 2. 

Thus (1.1) represents in a concrete formula the whole geo­
metric process of deformation ofSO(3,R ) and its representa­
tions over to the group of rigid motions in R 2. [This asympto­
tic formula is also a key example in the Inonu-Wigner 
theory 10 of "contractions" of Lie groups. The relation 
between the Inonu-Wigner theory and the theory of defor­
mation of Lie groups and algebra is discussed in Ref. 4.] 

System theoretically, this involves a family oflinear 
time-invariant scalar input-output systems, parameterized 
by the integer n, n = 0,1, .... The left-hand side of (1. 1) is the 

.) Supported by a grant from the Ames Research Center (NASA), 
#NSG2402, from the Army Research Office, #IUGll02RHN7-
05MATH, and from the National Science Foundation, Grant No. MCS-
8201779. 

impulse response (or kernel of the linear jilterdetermining the 
input-output relations) of a system with infinite dimensional 
state-space. I The right-hand side, for finite n, is the impulse 
response of such a system with minimal state dimension 
2n + 1, i.e., the dimension of the spin n representation of 
SO(3,R ). We shall see that there are important issues here in 
the theory of linear input-output systems, particularly the 
question of limit of sequences of finite and increasing state 
dimension systems, and that of approximation of systems 
with "large" (possibly infinite) state dimensions by systems 
with "small" state dimensions. 

An approach ofM. Hazewinkel6 gives us a useful math­
ematical framework to think about this area of approxima­
tion and limits of input-output systems. It is also useful to 
take the Laplace transform of both sides of (1.1), the result is 
that in the "frequency domain" the "transfer functions" (i.e., 
Laplace transform of the impulse response, or "symbol" in 
the appropriate pseudodifferential operator sense) will not 
converge pointwise, but will have some suitable "asympto­
tic" relation. It seems appropriate to look for the geometric 
nature of these limiting relations in the work done by Martin 
and myself!! on the geometric interpretation of the "transfer 
function" as a complex-analytic curve in a Grassman mani­
fold. 

The formulas for Laplace transform of both sides of 
( 1.1) are as follows!2: 

i'" P2n (cost)e-Sldt= Nn(s) , 
o Dn(s) 

(1.2) 

with numerator and denominator polynomials as follows: 

Nn(s) = (S2 + l)(s2 + 9)"'(S2 + (2n - 1)2), (1.3) 

Dn (s) = S(S2 + 4)(S2 + 16) ... (s2 + (2n)2) , (1.4) 

i'" e - sl J (t) dt = 1 
o 0 (S2 + I)! /2 . 

(1.5) 

The question arises of the relation between formulas (1.2)­
(1.5) as n-CfJ. It is seen that these are Pade approximations. 
Thus, we see new and unexpected relations arise between 
different parts of mathematics, motivated by certain areas of 
applications. 

My aim in this paper is to develop a broader explanation 
in terms of what geometers call deformation theory for this 
type of asymptotic formulas. There is also an innovative 
mathematical feature involved in the work here. In the clas­
sicalliterature, limit formulas of type (1.1) are proved by 
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residue calculus or estimates of terms of power series. The 
techniques used here (and in previous work4

•
5

) involves the 
Lebesgue dominated convergence theory applied to one-pa­
rameter groups of diffeomorphisms (often even gradient 
flows) acting on manifolds. On the applied front, I believe 
that techniques will be useful in broader areas of applications 
of systems/filters. 

I would like to thank M. Hazewinkel and G. Zames for 
many conversations about this cross-disciplinary material. 
In particular, I note that recent work by Zames 13.14 is closely 
related to this material, but uses a different mathematical 
formalism, namely, the theory ofthe Hardy Hp spaces. I 
expect that investigation of the relation between the Lie 
group deformation theory and approximation in the Hardy 
sense will be a fruitful field of mathematical investigation. 

2. THE DEFORMATION OF THE LEGENDRE INTO THE 
BESSEL FUNCTIONS 

As preparation for a more general setting, let us exa­
mine what is involved geometrically in formula (1.1). Con­
sider the classical Laplacian integral formula: for nth degree 
Legendre polynomials with n an integer 

Pnx = - (x + i(l - X2)1/2 cos e)" de 1 I7r 
21T - 7r 

XE C, n = 0,1,2, .... (2.1) 

Let us convert this explicitly into an integral over the unit 
circle S I in R 2, that we will parameterize by z = ejO EC. Let u 

denote a point of S I as an abstract real-analytic manifold (so 
that "e" is a real-analytic function onS I), and let "du" be the 
volume-element differential form-measure on S I of total vol­
ume 1, which is invariant under the action of rotations. Thus 

r Idu = _1 I7r I(e) de, 
Js' 21T - 7r 

(2.2) 

when u-I(u) is a measurable function on S I. We have 

Pn(x)= r (x+!(x2-1)1/2(z+z-l)n)du, (2.3) 
Js' 

where "z" denotes the complex valued function 
e_e'o =z(e) onSI. 

Notice that we can also write (2.3) as the integral over S I 
of a merom orphic one-differential form in C2

, the space of 
complex variables (A, z). Set 

x = ! (A + A -I) , (2.4) 

X2 _ =!(A 2 + 2 + A -2) - 1 

= !(A 2 _ 2 + A -2) 

=! (A -A -1)2 

or 

Set 

UJ = (i/4i) [(A +..1. -I) + (A -A -I)(Z +Z-I)]" Z-I dz. 

(2.5) 
Theorem 2.1: Pn(x), the value of the nth Legendre po­

lynomial at XEC, is equal to the integral over the curve z = e jO 

of the meromorphic one-form UJ on C X C given by formula 
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(2.5), with A and x related via the linear fractional transfor­
mation (2.4). The polynomial dependence on x results (geo­
metrically) from the fact that UJ is a rational differential form, 
and that the integral can be evaluated as a residue at the 
singularity z = 0, which is rationally related to x via (2.4). 
We also have the following formula in terms of natural "in­
trinsic" geometry on S I: 

Pn(x)= r ![(A+A-I)+!(A-A-I)(Z+Z-I)]ndu 
Js' 

with A and x again related via (2.4). 

(2.6) 

Now we are prepared to discuss, geometrically, the lim­
it (1.1). 

Pn ( cos ~) 

= r [cos~ + ~Sin~(z+z-I)]n du 
Js' n 2 n 

= ( [1+ ~(Sin(t/n))t(z+z-I) 
Js' 2 t /n n 

Abstractly, we have a sequence of COO functions, 

In(t, z), 

defined on C X S I, such that 

lim In (t, z) = exp (z i(z + Z-I)) 
n-oo 2 

(2.7) 

for each tEC, zES I. (2.8) 

The right-hand side of (2.6) is an integrable function on S I. 
The Lebesgue dominated convergence theorem 15 then im­
plies the following result: 

Theorem 2.2: For each tEC, 

(2.9) 

The right-hand side of (2.9) is the Laplace formula for 
the Bessel function, hence this formula is equivalent to (1.1). 

3. HAZEWINKEL'S DEFINITION OF "LIMIT" OF A 
SEQUENCE OF LINEAR FILTERS 

Let R + denote the additive semi group of nonnegative 
real numbers parameterized by tER, t;;;.O. Let C(R+) or 
C (0, 00 ) denote the space of complex-valued, continuous 
functions on R +. A (scalar, input-output, time-invariant) 
linear filter is a linear map: F:C (R + )_C (R +) of the following 
form: 

F(lJ)(t) = f l(t-r)lJ(r)dr for lJEC(R+) , (3.1) 

where the Lebesgue measurable functionfR + _C satisfies 
the following condition: 

f I I(t ) I dt < 00 for all a,bER +. (3.2) 
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lis the impulse response of the filter. This can be written 
algebraically as 

F(~) = I*u, (3.3) 

where * is the causal convolution 1 on C (R +), studied by 
Titchmarsh and Mikusinski. 15

,16 

In linear system theory, one often encounters families of 
such filters depending on parameters and looks for natural 
ways of defining limits of such systems as the parameters 
vary. The standard functional analysis l5 methods for defin­
ing topologies on linear operators do not seem completely 
satisfactory, for reasons I will not go into here. Instead, we 
will use an approach which is a hybrid of the classical and 
modem techniques9

•
15 suggested by Hazewinkel. I6 One first 

of all provides a linear subspace U of inputs, i.e., a linear 
subspace of C (R +). Then, one imposes a family of exponen­
tially weighted sup-norms on C (R +), and requires that a se­
quence Fo,FI,F2' .. , of filters converges to F if, for each ~E U, 
the outputs 

yn=Fn(~)' n=0,1,2, 

converges in all the family of norms. For details, refer to Ref. 
6. 

4. LINEAR SYSTEMS DEFINED BY INTEGRATION 

There is another feature of Sec. 2 that is worthwhile 
defining in general-the way the kernels of the linear filters 
t-+Pn (cos(t In)) and t-+Jo(t ) are defined by integration over a 
measure space Z. (In the case of Sec. 2, the Z is the unit circle 
in R 2, with the measure just Lebesgue measure, or, if it is 
identified with the Lie group SO(2,R ),just the Haar measure. 

Let (Z, dz) be a space with a countably additive field of 
measurable sets 15 and a countably additive measure dz de­
fined on this field. 15 Impose the usual Lebesgue measure on 
R +, defined on the Borel sets. Let 

k:R+XZ-+C, 

be a map which is measurable with respect to the product 
measure on R + X Z and Lebesgue measure on Z such that 
the following condition is satisfied: 

f f I k(t,z)1 dtdz< 00 

la,bJxZ 

for each finite interval [a,b] C R + • (4.1) 

The Fubini theorem on product measures l5 then guar­
antees that the following formula 

I(t) = L k (t, z) dz, (4.2) 

defines a map: R + -+C, which is defined for all but a set of 
measure zero in R+. Further,fis locally integrable, in the 
sense that 

f I l(t)1 dt < 00 for all a,bER + . (4.3) 

Let us use the function defined by formula (4.2) to define 
a linear filter map C(R +)-+C(R +) 
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F(~)(t) = f u(t - 1')/(1') d1' 

for ~:t_u(t) an element of C(R +). (4.4) 

Use (4.2) and the Fubini theorem again to write the filter as 
follows: 

F(Ij)(t) = f u(t - 1') L k (1', z) dz d1' 

= f L u(t - 1') k (1', z) d1' dz 

= f 1 u(1') k (t - 1', z) d1' dz . (4.5) 

We can also estimate the exponentially weighted sup­
norms used by Hazewinkel6

: 

e - bl I~(t)< f L e - bl lu(1') k (t - 1')1 d1' dz . (4.6) 

5. CONVERGENCE, IN THE HAZEWINKEL TOPOLOGY, 
OF LINEAR FILTERS DEFINED BY INTEGRATION 

Now, let the kernel functions k, and the linear filters 
they determine, as described in Sec. 4, depend on parameter. 
For simplicity, in this paper the only parameter we will con­
sider will be the integers n = 0,1,2, ., .. 

Z is a measure space with measure dz. Let 

kn:R+XZ-C 

be a sequence of measurable kernel functions which satisfy 
the condition (4.1), hence define, for each n a linear filter 

Fn(~) = f L u(t - 1') kn(1', z) d1' dz. (5.1) 

Let 

F "" (~) = f L u(t - 1') k"" (1', z) d1' dz (5.2) 

be another linear filter with similar properties. 
To apply Hazewinkel's ideas6 and discuss when it may 

be considered that 

lim Fn =F"" , (5.3) 
n~"" 

we are interested in sufficient conditions for the integral on 
the right-hand side of (5.1) to converge, as n-oo, for fixed 
t-+u(t) to (5.2). This can be done, given our hypotheses, by 
the Lebesgue dominated convergence theorem. 

Theorem 5.1: If the following conditions are satisfied: 

n~"" 

for almost all (t, Z)E R + X Z, 

f I k"" (t, z)1 dtdz< 00 , 

f lu(t)1 dt< 00 fora,bER+, 

then, 

lim I Fn (l!)(t) - F"" (l!)(t)1 = ° for all tE R. 
n~"" 

Robert Hermann 
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Our strategy now is to specialize Z to be a manifold with 
the measures "dz" defined by smooth differential forms, and 
the kernels k ( , ) associated with Lie algebras of differential 
operators on Z. In this paper, we will only consider the case 

Z = S I, the unit circle in R 2, (5.7) 

and the Lie algebra that the representation (depending on a 
parameter) of the Lie algebra ofSO(3,R ). As the values of the 
parameters go to infinity, we shall be able to apply the limit 
theorems sketched in this section to obtain "degeneration" 
of these linear filters to those associated with a "contraction" 
(in the Inonu-Wigner senseID) ofSO(3,R ) to the group of 
rigid motions in R 2. 

6. LINEAR SYSTEMS DEFINED BY REPRESENTATIONS 
OF THE LIE ALGEBRA OF SL(2,C) BY ONE-VARIABLE 
DIFFERENTIAL OPERATORS 

As explained in the end of Sec. 5, we are motivated to 
choose 

Z=SI 

and the linear filters whose kernel is of the form 

I(t) = i h (z) exp(tD H/Hz) dz, (6.1) 

where/,h are functions: Z---c>C, and D is a first order differen­
tial operator associated with the representation of the Lie 
algebra ofSO(3,q. The formulas for this situation have been 
worked out in Ref. 5. 

Let S I be the unit circle in C with parameter 0, i.e., 

is the embedding map from S 1---c>IC. Consider the following 
differential operator: 

d 
A I =-

dO 

'-Id 
=IZ -, 

dz 

A ., 0 d . 0 = 1 sm - + az cos 
dO 

i ( I) I d . a ( -I) = - -z-z- z- - +1- z+z , 
2 dz 2 

A2 = [AI,A] 

= i cos 0 ~ - ia sin 0 
dO 

i I I d a ( -I) = - - (z - z- ) z- - + - z - z . 
2 dz 2 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

Then, (A, A I' A 2 ) satisfy (for fixed a), the commutation rela­
tions of the Lie algebra [§ of the Lie group G = SO(3,R ). 

For each aEC, these families define a representation of 
[§ by linear maps on the C "'(S I), the C "', complex-valued 
functions on S I. Let D I(S I) be the Lie algebra of first order 
linear differential operators on S I, considered as acting on 
C "'(S I). Formulas (6.2)-(6.6) define, for each aEC, a Lie al­
gebra homomorphism 
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Pu: [§ ---c> D I(S I). 

Thus, for each aEC, the imagepu(f§) is a Lie subalgebra of 
linear differential operators on S I. We now ask what hap­
pens as a-+oo, i.e., as(J = lIa---+<). 

Theorem 6.1: Consider 

(J-+p 1If3 ( f§) - 5t' f3 

as a one-parameter family of Lie algebras of differential op­
erators for (J =1= O. If 5t' is defined as the Lie algebra generated 
by the following operators 

d 
dO ' 

i cos 0, - i sin 0, (6.7) 

then(J-+5t' f3 is a smooth family of Lie subalgebras of D I(S 1), 
including the point (J = O. 5t' 0 is isomorphic to the Lie alge­
bra of the group of rigid motions in R 2. 

Proof ((JA, (JA 2, A I) form a basis for 5t' f3' which goes 
over, as (J-+O, to the Lie algebra (6.7). Q.E.D. 

We can now, as in Ref. 5, p. 174, easily compute the 
matrix elements of the one-parameter groups t-+exp(tpa (A )), 
and verify, using the geometric techniques developed there, 
that the hypotheses are satisfied that are needed to apply the 
methods of Sec. 5 for describing the asymptotic behavior of 
these matrix elements. We see that the special example of 
formula (1.1) is quite typical of the general matrix element. 
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The paths of integration for the new generalized Bessel transform 
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It is shown that the comments made in a recent paper regarding the previously developed "New 
generalized Bessel transform and its relationship to the Fourier, Watson, and Kontorowich­
Lebedev transforms" are based on erroneous assumptions. The claim that the path of integration 
parallel to the real axis (below the singularities of the transform function on the real axis) cannot be 
transformed to a contour around the singUlarities of the transfer function in the lower half-plane 
contradicts the very basis of the firmly established Watson transformation and the most advanced 
theories in radio wave propagation over the Earth's surface and cylindrical structures. 

PACS numbers: 02.30.Gy 

I. SUMMARY OF NEW GENERALIZED BESSEL 
TRANSFORM 

In the paper "New generalized Bessel transform and its 
relationship to the Fourier, Watson, and Kontorowich-Le­
bedev transforms , I " the following transform pair was 
derived: 

Ez(S,q» = 1 E(v,rP )1/Iv(s)dv, 

E(v,rP) = ~ r'" Ez(S,rP )H~)(S).!'....cts, J5 S 
in which 

1/Iv(S) = H~)(s) + RvH~)(s), 

(1 ) 

(2) 

(3) 

where H~)(S) and H~)(S) are the Hankel functions of the 
first and second kind, respectively, v is the order and S = kr 
is the argument (k is the wave number and r is the distance 
from the z axis in the cylindrical coordinate system,r,rP,z). 
The path of integration L lies parallel to the real axis such 
that all the singularities of E (v,rP ) on the real axis lie above the 
path L ( see Fig. 1 reproduced from Ref. 1). The coefficient 
Rv in (3) depends upon the boundary condition at S =SR' 
Thus for the Dirichlet condition 

Ez(SR'rP) = 0, 

Rv = -H~)(SR)/H~)(SR)' 

(4) 

(5) 

The more general expression for Rv for the impedance 
boundary condition is given in Ref. 1. Using (1) and (2) the 
following expression for the Dirac delta function 8 (S - So) 
was obtained: 

S8(S - So) = !11/lJL(S)H~)(sollt dlt, S <So' (6) 

On applying the transforms (1) and (2) to the problem of 
radiation by a line source (at S = So, rP = rPo) parallel to a 
perfectly-conducting cylinder of radius SR <So, the follow­
ing expression for the vector potential was obtained: 

(7) 

in which the solution for the transform a(p"rP ) was given by 

a(p"rP) = - ~ltoI H~)(So) 

X [cot 1t1T cos It(rP - rPo) + sin It(rP - rPo)], (8) 

where Ito is the permeability offree space and I is the intensi­
ty of the current filament. Since H~)(So)1/IJL (S )sin It(rP - rPo) 
is an odd function of It and since it is analytic on the real axis, 
the second term in (8) contributes nothing toA (S,rP ) and it can 
therefore be surpressed. Thus (7) was shown to reduce to 

A (S,rP) = - ~ltoIl H~)(So)1/IJL(S)COtlt1TCOSlt(rP - rPo)dlt· 

(9) 

On deforming the path of integration L to the contour 
C; + C2 (see Fig. 1) and employing Cauchy's integral theo­
rem to account for the contributions from the residues at the 
poles of a(p"rP ) on the real axis (v = 0,1,2,3, ... ), it was shown 
that 

n 

where 

{
I, 

En = 2, 
n=O 

(11) 
n = 1,2,3,···. 

The solution for S> So is obtained by interchanging S with 
So in (10).1 

The corresponding Watson transform is obtained by 
closing the path of integration L by an infinite semicircle in 
the negative half-plane.2

•
3 "The contribution from this por-

Im(!') 

L, 

--c, 

FIG. 1. Integration paths in the complex /.l plane. 
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Im('i) 

c, 
Re(, ) 

c, c, 

x 
x 

x 
x 

x 
x 

FIG. 2. The contour in the complex v plane showing the location of the real 
and complex poles. 

tion of the contour vanishes as the radius of the semicircle 
approaches infinity" (Ref. 3). Thus on noting that the poles 
in the lower half-plane are at the values of v n that satisfy the 
modal equation 1!R" = 0 (see Fig. 2 reproduced from Ref. 
3), the following Watson expansion for A (s,l/J) was derived 
from (10): 

A (J;- A.) _ 1. /"C'[H(2)(J;-) H~)(SR) 
':>,'1' - -"4'1TJ.tr";- J.l ':>0 a[H~)(SR)]/aJ.t 

XH~)( 5) COtJ.t1T CO!¥l(l/J -l/Jo)L~J.ln . (12) 

The relationship between (10) and (12) is at the core of the 
Watson transformation.2,3 

For 5R-OO and for SR-G the above Watson expres­
sion cannot be used and it was shown that in these limits the 
solution for A (5,l/J ), Eq.(7), reduces to the Fourier transform 
and the Kontorowich-Lebedev transform, respectively. I 

As indicated in Ref. 1, the motivation for the derivation 
of the transform pair (1) and (2) was to obtain complete ex­
pansions for the electromagnetic fields in the vicinity of cy­
lindrical structures characterized by variable radius of cur­
vature p(O <p < 00) and surface impedance.4 Fields 
transforms have also been derived for cylindrical or spheri­
cal structures with n concentric layers.5 

II. EXAMINATION OF SAMADDAR'S CLAIMS 

In a recent paper,6 Samaddar claims that on using an 
entirely different method to derive the transform pair (1) and 
(2), he has shown that instead of the contour L (see Fig. 1), the 
path of integration should have been the closed contour 
around the singularities of R,,(5) [namely the zeros of 
H ~)(S R)]. He further states that it is not permissible to de­
form the closed contour around the singularities of R" to the 
path L. Such a statement contradicts the very foundation of 
the Watson transformation,2 which has been securely estab­
lished for over 60 years and is the basis for the most advanced 
theories in radio wave propagation around the surface of the 
Earth.3 According to Samaddar,6 the contour L in (6) and 
therefore the transform pair (1) and (2) "cannot be used for 
any arbitrary function Ez(s,l/J ), which has a strong singular­
ity like a delta function 8 (s - So)." To justify his statement 
he maintains that the condition 
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(13) 

must be met as ivi-oo in order to deform the closed contour 
around the poles of R" to the path L. Thus he goes on to state 
"It may be noted that since l/J = 0 in (2.5) condition (2.13) 
cannot be fulfilled and consequently the contour C in (2.5) 
cannot be deformed onto the portion of L lying to the left of 
the lowest-order zero of H~)(Sr)'" (Equation numbers of the 
form (n) are in the notation of the present paper; those of the 
form (m,n) are in the notation of Sam ad dar's paper.) 

Samaddar also states that "in the development of the 
pair (1) and (2) it is assumed implicitly that E (v,l/J ) is analytic 
in a horizontal strip bounded by two lines parallel to the real 
axis of the complex v plane (one below and the other above)." 
Nowhere in the development of the transform pair (1) and (2) 
was such an implicit or explicit assumption made. On the 
contrary, the transform a(p,l/J )(8)1 contains not only an ana­
lytic part H ~)Sot/JJ.l (S )sin J.t(l/J -l/Jo) (that was suppressed) but 
also a term proportional to cot J.t1T. Were it not for the poles 
at f1. = 0,1,2, ... , it would be impossible to obtain the correct 
results (10). Based on his assumption, this author then states 
"the path Lin (1 ) can be shifted onto the entire real axis of the 
v plane." It is "evident" according to him from the proper­
ties ofthe Hankel functions and E (v,l/J ) that the integrand in 
(1) is an odd function of v and, therefore, the integral (1) 
vanishes identically. If, as this author claims, the integral (1) 
"vanishes identically" the transform pair (1) and (2) cannot 
be used for any function Ez(S,l/J) whether it has a strong or 
weak singularity or no singularity at all. Yet the transform 
pair (1) and (2) from which the spectral representation for the 
Dirac delta function 8 (s - So) was derived (6), yields the cor­
rect result for the fields due to a line source in the vicinity of a 
perfectly conducting cylinder (10),(12).1 

Again in his concluding remarks this author assumes 
that in going from Eqs. (2.6b) to (2.7b) in Ref. 1 "the trans­
form function E (v,l/J ) was implicitly treated as analytic inside 
a horizontal strip containing the real axis in the v plane." 
However, in going from (2.6b) to (2.7b) it is only necessary to 
note that the analytic terms can be suppressed without af­
fecting the final results. Stated more formally, we partition 
the set of transforms into a set of "equivalence class offunc­
tions" by means of the following equivalence relation. Any 
two functions in the set of transforms E (v,l/J ) are considered 
equal if they differ by a function F (v,l/J ) such that 
F(v,l/J )t/Jv(S) is odd and regular on the real axis. 

It is interesting to note that the "entirely different meth­
od"7 Samaddar refers to in his paper6 was also applied to the 
more general problem of propagation in cylindrical or 
spherical structures with n concentric layers.5 Line source 
excitations were considered involving Dirac delta functions. 
A precise criterion for the deformation of the contour was 
derived5 and it was shown that these more general results are 
consistent with those obtained by Bahar in his earlier work. I 
Regretably Samaddar made several erroneous assumptions 
and did not realize what is firmly established through the 
Watson transform,2·3.5 namely, that the integration along 
the path L can be deformed to the contour integration 
around the poles of the function R v (5).2.3.5 
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Thorpe-Hitchin inequality for compact Einstein 4-manifolds of metric 
signature (+ + - -) and the generalized Hirzebruch index formula 
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It is proved that the Euler characteristic and the Hirzebruch index of a compact oriented Einstein 
4-manifold of metric signature (+ + - -) satisfy an inequality which is well known as the 
Thorpe-Hitchin inequality for the case of a Riemannian metric. To derive the inequality, a 
generalized Hirzebruch formula relating the index to the first pseudo-Pontrjagin number of the 
manifold is proved. This formula may be contrasted with Chern's generalized Gauss-Bonnet 
formula for a pseudo-Riemannian manifold. 

PACS numbers: 02.40. + m 

I. INTRODUCTION 

It was shown by Thorpe! and later by Hitchin2 that for a 
compact oriented Einstein 4-manifold with a Riemannian 
metric, the Euler characteristic X and the Hirzebruch index 
r of the manifold satisfy the inequality 

Irl<jx. (1.1) 

The purpose of this paper is to show that this inequality also 
holds for compact oriented Einstein 4-manifolds of metric 
signature (+ + - -). The author's earlier resule is that 
for a compact oriented 4-manifold of metric signature 
(+ + - -), the Euler characteristic of the manifold is 
even and is congruent mod 4 to the Hirzebruch index of the 
manifold. Moreover, if the manifold admits an Einstein met­
ric of such a signature, then the Euler characteristic is non­
negative. 

Every indefinite metric on a two- or three-dimensional 
manifold is necessarily of Lorentz type. A compact oriented 
manifold admits a Lorentz metric if and only if the Euler 
characteristic vanishes.4 Thus an investigation of 4-mani­
folds of metric signature (+ + - -) is important from the 
point of view of the differential topology of pseudo-Rieman­
nian manifolds. 

As remarked at the end of the author's earlier paper,) it 
has remained open whether or not the pseudo-Pontrjagin 
number defined on a pseudo-Riemannian bundle over a 
manifold coincides with the Pontrjagin number defined on 
the tangent bundle over the manifold. 

In this paper, this is affirmatively proved for the case of 
metric signature (+ + - -). Such a coincidence enables 
us to give an analog of the Hirzebruch formula between the 
Hirzebruch index and the pseudo-Pontrjagin number for 4-
manifolds of metric signature (+ + - -). Applying this 
new generalized Hirzebruch formula to an Einstein 4-mani­
fold of this signature, we have the Thorpe-Hitchin inequa­
lity. It should be noted that the generalized Hirzebruch for­
mula may be contrasted to the generalized Gauss-Bonnet 
formula of Chern5 for a pseudo-Riemannian manifold. 

In comparison of the three types of metric signature 
(+ + + +), (+ + + -), and (+ + - -), the last 
type under consideration is important for the following three 
reasons. (1) The first is that such a metric is the lowest-di­
mensional example of an indefinite metric that is not a Lor-

entz metric, as stated before. (2) There is a similarity between 
Riemannian 4-manifolds and 4-manifolds of metric signa­
ture (+ + - -) since the Lie algebras so(4) and so(2,2) 
have similar isomorphisms 

so(4) = so(3) + so(3), 

so(2,2) = so(I,2) + so(I,2). 

(1.2a) 

(1.2b) 

(3) There is another similarity between Einstein 4-manifolds 
of metric signature (+ + - -) and those of Lorentz sig­
nature in that there are three types, known as the Petrov 
types,6.7 of the normal forms of the curvature tensors. 

Thus the signature (+ + - -) becomes the primary 
concern of the present paper. 

In Sec. II, the generalized Hirzebruch formula is 
proved along a line of thought of Chern. 5 In Sec. III, as 
preliminaries, the three types of normal forms of the curva­
ture tensor for an Einstein manifold will be given together 
with the Euler characteristic and the pseudo-Pontrjagin 
number for each type.) In the last section, the Thorpe-Hit­
chin inequality is proved for each type of Einstein 4-mani­
fold of metric signature (+ + - -), and the characteristic 
numbers are illustrated. 

II. GENERALIZED HIRZEBRUCH INDEX FORMULA 

By a manifold we mean a connected, paracompact, C 00_ 

differentiable manifold. Let S be the tangent bundle 1T:E~M 
over the four-dimensional manifold M. The bundle S is 
called a pseudo-Riemannian tangent bundle if there exists a 
nondegenerate symmetric bilinear form ( , ) in each fiber 
1T- 1(X), which varies in a COO way with xEM. 

For the present we only consider the case that the signa­
ture of ( , ) is of type (+ + - -) throughout the manifold 
M. We may impose, in addition, a Riemannian structure 
( , )R on S, such that (U,V)R' u, VE1T-!(X), is a quadratic 
form of signature (+ + + +), which also varies in a C oc 

way with x. Such a form exists since M is paracompact. 
For a fixed xEM, a vector UoE1T- I (x) is an eigenvector of 

( , ) relative to ( , )R' with eigenvalue A, if 

(ua,v) = A (uo'v) R (2.1) 

for all VE1T-!(X). There are two positive and two negative 
eigenvalues. The fiber over each point x can be split into two­
dimensional subspaces 1T~ I(X) and 1T= !(x) spanned by the 
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positive and negative eigenvectors, respectively, as follows: 

(2.2) 

Thus any vector UE1T- I(X) can be decomposed into two parts: 

(2.3) 

where U+E1T:; I(X) and U_E1T= I(X). Such a structure implies 
that the bundle 5 can be written as a Whitney sum 

(2.4) 

of the subbundles 5 + and 5 _ with the total spaces 
E+ = UxEM 1T:; I(X) and E_ = UxEM 1T= I(X), respectively. 

We define in terms of ( , ), two quadratic forms < , > +, 

( , ) _ as follows for any two vectors U = U + + U _ and 
v=v++v_: 

(U,v) + = (u+,v+), 

(u,v) _ = - (u_,v_). 

(2.5a) 

(2.5b) 

Both quadratic forms are positive definite, and accordingly 
define the Riemannian structures on 5 + and 5 _, respective­
ly. The quadratic form (u,v) can therefore be written in terms 
of these forms as 

(U,v) = (u,v) + - (u,v)_, (2.6a) 

and the expression 

(U,v) = (u,v) + + (u,v)_ (2.6b) 

defines a Riemannian structure on the bundle S-
In 5 + and 5 _, take connections ill + and ill _ admissible 

to ( , ) + and ( , ) _, respectively. Then the direct sum 

(2.7) 

is a connection in 5, which is admissible to both structures ( , ) 
and ( , ). Denote by ill + ) and ill _) the curvature 2-forms on 
5 + and 5 _, expressed by 2 X 2 matrices, as derived from the 
connections ill + and ill_, respectively. Then the 4X 4 matrix 

il = [flo 1+) 0 ] 
fl'_1 

(2.8) 

is a curvature on s-
The first Pontrjagin class P I of the bundle 5 is represent­

ed by the ad(SO(4))-invariant closed 4-formPI on M given by 
the formula 

det[/4 - (1!21T)fl] = 1T*(1 + Pd, (2.9) 

where 14 = diag[ + I, + 1, + 1, + 1]. Analogously, we give: 
Definition 1: The class represented by the ad(SO(2,2))­

invariant 4-form Pion M in the formula 

det [/2•2 - (1!21T)fl ] = 1T*( 1 + Pd (2.10) 

is called the first pseudo-Pontrjagin class and is denoted by 
Pi' where 12,2 = diag[ + I, + 1, - 1, - 1]. 
For such classes we have: 

Proposition 2: PI = PI' 
Proof This is shown by a simple calculation as follows. 

Using (2.8), we have 
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det [12,2 - (1!21T)fl ] 

= det [12 - (1/21T)fl( +)] A det [ - 12 - (1!21T)fl( _)] 

= det[/2 - (1!21T)fl( + I] Adet t [ - 12 - (1!21T)fll _)] 

= det [/2 - (1!21T)fl( + ) ] A det [ - 12 + (1!21T)fl( _ I ] 

= det [12 - (1!21T)fl( +) ] A det [12 - (1!21T)fll -I]' 

which coincides with (2.9). In the above, the last equality 
holds since detA = det( - A ) for any 2 X 2 matrix A. 0 

Now let us state the generalized Hirzebruch index for­
mula. 

Theorem 3: Let Mbe a compact oriented 4-manifold of 
metric signature (+ + - -), andpI[M] be the first pseu­
dO-Pontrjagin number of M, a numerical analog of the first 
Pontrjagin number PI[M]. Then the Hirzebruch index reM] 
of M is given in terms ofpl[M] by the formula 

r[M]=jPI[M]. (2.11) 

Proof This is clear from the Hirzebruch formula 
reM] = jPI[M] together with Proposition 2, 0 

III. CURVATURES OF EINSTEIN 4-MANIFOLDS OF 
METRIC SIGNATURE (+ + - -) 

It is important to compare the Lie algebras so(4), so(2,2), 
and so(3, 1), which are the Lie algebras of the structure 
groups for a Riemannian 4-manifold, a 4-manifold of metric 
signature (+ + - -), and a Lorentz 4-manifold, respec­
tively. For the first two Lie algebras, there are similar iso­
morphisms 

so(4) = so(3) + so(3), 

so(2,2) = so(I,2) + so(I,2). 

(3.1a) 

(3.1b) 

On the other hand, there is no such decomposition for 
so(3, 1). These isomorphisms imply that the space A 2 of 2-
forms at each point is decomposed into two parts 

A 2 = A 2+ + A 2_ , (3.2) 

where A 2± are the ± 1 eigenspace of the Hodge star opera­
tor *, with 

*2 = 1. (3.3) 

On the Lorentz 4-manifold, however, the star operator for 
A 2 satisfies 

*2 = _ 1, (3.4) 

and A 2 cannot be decomposed in a similar way. 
Now consider A 2 on M of metric signature 

(+ + - -). Corresponding to the decomposition (3.2), we 
introduce a basis [E i+ ,E ~ l (i,j = 1,2,3), the duality basis, 
for A 2 = A 2+ + A 2_ , with the following properties: 
for the star operator 

*E i+ = E i+, *Ei_ = _ Ei_; 

for the inner product 

(E~,E t) = £iDaptJ'j (u,p = +, - ); 
and for the wedge product 

Ei+ AEj+ = _Ei_ AE~ =E'/jijw, 

E i+ A E j_ = 0, E i_ A E ~ = 0, 

Yasuo Matsushita 

(3.5) 

(3.6) 

(3.7) 
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where the symbols used above are as follows: 8ij is the Kron­
eckerdelta;ll= -c= -~= +1,8++=8 __ =1, 
8 + _ = 8 _ + = 0, and W is the volume element. 

The curvature tensor R is a linear transformation in A 2, 

and is expressed by a 6 X 6 matrix. Relative to the duality 
basis, R is decomposed into four disjoint parts 

R =R+ +R_ +R+_ +R_+, (3.8) 

where R ± EEnd(A 2± ), R + _ EHom(A 2_ ,A 2+ ), 
R _ + EHom(A 2+ ,A 2_ ). 

If M admits an Einstein metric of signature 
(+ + - -), then the curvature tensor takes the general 
form 

R+ = [Po+ ~], R_ = [~ pOJ, R+_ =R_+ =0, 

(3.9) 

(3.10) 

+Vl/2 

[

1L2 ± (vl/2 + v2) 
(2) P ± = +vl/2 -1L2 

o 
± (vl/2 - v2 ) 

o 

(3.12c) 

withK#O. 
Hereafter we consider a compact oriented Einstein 4-

manifold of metric signature (+ + - -), also denoted by 
M. We need the Euler forms and the pseudo-Pontrjagin 
forms for the main theorem stated in the next section. 

At each point of M, corresponding to each normal form 
of the curvature tensor, the Euler form X is of one of the 
following three types: 

3 

(1) X = (l/~) L (1L7 + V;)w, 
i=l 

with constraints (.) in Lemma 4; 

(2) X=(l/~)[(lS)2+vi +2(1L~ +~)]w, 

with VI #0; 

(3) X = (3S 2/26r)w. 

(3.13a) 

(3.13b) 

(3.13c) 

Corresponding to each of the above expressions, the 
pseudo-Pontrjagin form .01 is of one of the following types: 

3 

(1) PI = (l/r) L (€lLiVi)W, 
i= 1 

with constraints (.); 

(2) PI = (l/r)( -lSvl + 21L2V2)W, 

with vl#O; 

(3) PI = O. 
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(3.14a) 

(3. 14b) 

(3.14c) 

with constraints 
3 

!trR = trP + = trP _ = L Ea i = as, (3.11a) 
i= • 

S = scalar curvature, 

and 
3 

L ai=O. (3.11b) 
;=1 

The normal forms of the curvature tensor are given as 
follows. 

Lemma 43
: For an Einstein 4-manifo1d of metric signa­

ture (+ + - -), the curvature tensor at each point takes 
one of the following three forms: 

[

ILl ± VI 0 

(1) P ± = 0 -1L2 ± V2 
o 0 

o 1 o , 
-1L3 ± V3 

(3.12a) 

with constraints 

3 A' S L €'lLi =-, 
i=. 4 

3 

L Vi =0; 
;= I 

(3.12b) 

The Euler characteristic and the pseudo-Pontrjagin 
number are obtained by integrating above forms over M. 

IV. THORPE-HITCHIN INEQUALITY 

By Theorem 3, the Hirzebruch index form is given in 
terms of the pseudo-Pontrjagin form. Thus we have: 

Proposition 5: Let M be a compact oriented Einstein 4-
manifold of metric signature (+ + - -). At each point of 
M, corresponding to each normal form of the curvature ten­
sor given in Lemma 4, the Hirzebruch index form r is of one 
of the following three types: 

3 

(1) r = (l/3r) L (€lLiVi)W, 
i=l 

with constraints (.); 

(2) 7 = (l/3r)( -lSvl + 2!t2V2)W, 

with v.#O; 

(3) 7=0. 

(4.1a) 

(4.lb) 

(4.lc) 

The Hirzebruch index of M is obtained by integrating 
the above form over M. 

Now let us state the main theorem. 
Theorem 6: Let M be a compact oriented Einstein 4-

manifold of metric signature (+ + - -). Then the Euler 
characteristic X [M] and the Hirzebruch index r[M] of M 
satisfy the inequality 

ir[M] i<ix [M]. (4.2) 

Proof Consider a point of M. If the curvature tensor at 
the point is of type 1, then from (3. 13 a) and (4.1a) we have 
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~X +r = ~ ± [(Jl: + v7)+ 2WJl j v j )]w, 
61T j= I 

1 ~ (~ _ )2 
=~ £.. eJlj +Vj W, 

61T j= I 

where the rhs vanishes iff ~Jlj = ± Vj (i = 1,2,3). 

(4.3a) 

Similarly ifit is of type 2, then from (3.13b) and (4.1b) we 
have 

1X + r = (1/6rr)[(!S ± vlf + 2(Jl2 + V2)2]W, (4.3b) 

where the rhs vanishes iff VI = + AS and Jl2 = ± V2· 
If it is of type 3, then from (4.1c), r = 0, and hence we 

have 

(4.3c) 

where the rhs vanishes iff S = O. Therefore, integrating the 
above forms over M, we can conclude that the inequality 

1X[M] +r[M]>O (4.4) 

holds. This completes the proof. D 
Next we consider special cases for M, where the curva­

ture tensor has the same type of normal form at every point 
of the manifold. 

Theorem 7: Let M j be a compact oriented Einstein 4-
manifold of metric signature (+ + - -), whose curva­
ture tensor is of type i at every point of the manifold. Then 
for i = 1,2, the Euler characteristic X [ M j ] and the Hirze­
bruch inde]{ j [ M j ] of M j satisfies the inequality 

Ir[ M;] 1 <~X[ M;], (4.5) 

where the equality holds if and only if the curvature elements 
at each point of M j satisfy the following relations: 

(j = 1,2,3); 

for M2: VI = - AS, Jl2 = V2 or VI = !S, Jl2 = - V2· 

For M 3 , we have 

r[M3] = 0, (4.6) 

and hence 

(4.7) 

with equality iff S = O. 
Proof This is clear from the proof of Theorem 6. D 
The following facts are fundamental concerning the ex­

istence of pseudo-Riemannian metrics on manifolds.4 

Proposition 8: Let X be a compact oriented manifold. 
Then X admits a Lorentz metric if and only if the Euler 
characteristic X [X] of X vanishes. 

Proposition 9: Let X be a 4m-dimensional compact ori­
ented manifold. Assume that X admits a pseudo-Rieman-

nian metric of signature ( + ... + - ... - ), with q=2 mod 4, 
p q 

p + q = 4m. Then the Euler characteristic X [X] of X is even 
and is congruent mod 4 to the Hirzebruch index r[X] of X. 

Proof It is known4 that a compact manifold admits an 
everywhere defined, continuous, nonsingular, quadratic 
form of signature q if and only if it admits a continuous field 
of tangent q planes. The assertion of this proposition is di­
rectly derived from a resultS of Atiyah that for a compact 
oriented 4m-manifold admitting a field of tangent q planes, 
with q=2 mod 4, the Euler characteristic is even and con-
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gruent mod 4 to the Hirzebruch index of the manifold. D 
Corollary 10: Let M be a compact oriented Einstein 4-

manifold of metric signature (+ + - -). Then there is a 
nonnegative integer n such that 

X[M] = r[M] + 4n, (4.8) 

with n = 0 iffX [M] = r[M] = O. 
Proof The previous proposition asserts that there is an 

integern' such that X [M] = r[M] + 4n'.ltfollowsfrom the 
main theorem that n' is nonnegative since 

n' = !(x[M] - r[M ]»!(~Ir[M]1 - r[M ]»0, 

with equalities iffX [M] = r[M] = o. D 
Now let us look at the situations for each M j in some 

detail, where the equalities of (4.5) and (4.7) hold. 
Type 1, MJ : The curvature R = R + + R _ takes a diag­

onal form, which is quite similar to the normal form, ob­
tained by Singer and Thorpe,9 of the curvature tensor of an 
Einstein 4-manifold with a Riemannian metric. When the 
conditions ljJlj = Vj (j = 1,2,3) are satisfied, the part R _ of 
R vanishes, that is, 

R=R+, R_=R+_=R_+=O. (4.9) 

This implies that R satisfies the so-called self-duality condi­
tion 

*R=R. (4.10) 

In this case we have 

(4.11) 

On the other hand, R + vanishes iff ljJlj = - Vj 
(j = 1,2,3). In this case the curvature satisfies the anti-self­
duality condition 

*R = -R. 

For the characteristic numbers we have 

X[MI ] = - ~r[Md· 

Concerning these manifolds, we have 

(4.12) 

(4.13) 

Proposition 11: For M I , if the curvature tensor at each 
point is self-dual in the above sense, then there is a nonnega­
tive integer k such that 

X[MI ] = l~k, r[MI ] = 8k. (4.14) 

On the other hand, if it is anti-self-dual at each point, then 
there is a nonnegative integer k such that 

, 
\ . 
-\. 

\ 0 

\ 

\ 0 

\ . , . 
'0 

\ 
\0 ,. 

o / 

• 0 / 

24 0 I 
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0/ . / 
o I . / 
I 

o / 
1I'l. , 

• 0/ 

\ . o I 
/ 

/ \ 
\ I 

\ I 

-16 - 8 16 

(4.15) 

FIG. I. (r,x) for MI' 
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, 
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o , 

o / 
/ , 

12- , 
0/ , 
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o / 
/ 

, 

16 

, 

FIG. 2. (r,X) for M 2• 

In both cases, k = 0 iff Ml is flat. 
Proof Combining (4.8) with (4.11) and (4.13), we can 

easily show the desired relations. 0 
For these situations, see Fig. 1. 

Type 2, M2 : Since the parts R + and R _ of type 2 contain 
a nonzero element VI' the curvature can never satisfy any 
duality condition. The Euler characteristic is always positive 
and its least value is 4. When the conditions VI = - !S, 
112 = V2 (or VI = !S, 112 = - V2) are satisfied, we have 

X[M2] = ~r[M2] (or - ~r[M2]) 

S2 2 r 
= 2st? vol(M2) + ff2 JM, Il~ W 

= 12k, k;;;d. (4.16) 

See Fig. 2. 
Type 3, MJ : For M 3, the Hirzebruch index always van­

ishes. Therefore, the Euler characteristic is a multiple of 4 as 

3S 2 

X [M3] = - vol(M3) = 4k;;;.O, (4.17) 
26ff2 

with k = 0 iff S = O. No duality condition can be satisfied for 
M 3 . See Fig. 3. 

Remark: For a compact oriented Lorentz manifold the 
Euler characteristic vanishes. From a similar argument, it is 
easily seen that for a compact oriented Lorentz 4-manifold 
the Hirzebruch index is also zero. Thus the Thorpe-Hitchin 
inequality holds as a special case, where both sides vanish. 
Therefore, we may say as follows. 
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24 

FIG. 3. (r,x) for M,. 1, 

Theorem 12: Let X be a compact oriented 4-manifold. 
Assume that X admits an Einstein metric. Then the Euler 
characteristic X [X] and the Hirzebruch index r[X] of X sa­
tisfy the Thorpe-Hitchin inequality 

Ir[X] 1 <k [X], (4.18) 

irrespective of type of signature of the metric. 
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We describe an algorithm which produces K 2 X K 2 matrix approximations to the low energy part 
of the Schrodinger operator for N coupled oscillators. We carry out the algorithm analytically in 
the case K = 2, for arbitrary N. In particular we show explicitly in this case how the N-+oo limit 
exhibits critical behavior. 

PACS numbers: 02.60. + y, 02.70. + d, 03.65.Ge 

1. INTRODUCTION 

We describe an algorithm (called the K-state doubling 
algorithm) which produces K 2 xK 2 matrix approximations 
to the low energy part of the Schrodinger operator for N 
coupled oscillators. These operators have the form 

HIN) = HIN)(ql, ... ,qN) = J.. f (- a2laq] + V(qj)) 
2 j= 1 

I N 
+ 2/~o E(qj+1 _qj)2, 

where qo = qN+ 1 = 0 and N = 2L,L = 0,1,2,3,.· .. The algo­
rithm is a variant of one we have used 1-4 to obtain numerical 
approximations of the lowest few eigenvalues and eigenfunc­
tions of HIN). For the potential V(<,6 ) = g:<,6 4: and for each K 
the method yields (in the limit N-+ 00 ) an approximation v(K ) 
to the mass critical exponent vof HI",). The sequence I v(K) J 
appears to converge rapidly as K increases, for example 
v(2)~0.817,v(4)~O.969,v(8)~ 1.00. 

Our main purpose here is to carry out all the steps of the 
algorithm analytically for K = 2. In particular we calculate 
explicitly the spectra of the resulting 22 X 22 matrix approxi­
mations and their critical behavior in the limit N-+ 00 • 

The K-state procedure is motivated by two observa­
tions. First, 

HI2N) = HiN) + HhN) + BIN), 

where 

Hit) = HIN)(ql, ... ,qn)' 

H~NI = HINI(qN+ 1, ... ,q2N)' 

and 

BINI = - EqNqN+ I' 

Second, for many potentials including g:<,6 4: , B IN I is Kato 

alSupported in part by the NSF grants MCS-80-02938 and INT-7920728. 
blSupported in part by the NSF grant PHY -80-01979 and an NSF Postdoc­

toral Fellowship. 
clSupported in part by the NSF grant PHY-80-01979. 
dlSupported in part by the CNPq grant CNPq/NSF 0310.1465/80. 

bounded with respect to H \N) + H ~N). This suggests that the 
eigenfunctions of H\N) + H~N) are good approximations to 
the eigenfunctions of HI2N) and leads to the four-step 
algorithm: 

(i) Set N = 1 and jjll) = H(I). 
(ii) Let p~NI be the projection onto the K 2-dimensional 

space spanned by the tensor products of the eigenfunctions 
of II IN I corresponding to its lowest K eigenvalues. Then de­
fine5 

jjI2N)=p~N)(jjlt) + jj~N) + B IN))P~N). 

(iii) Compute the K lowest eigenvalues e\2N)<. ... <.e~N) 
and corresponding eigenfunctions ifJ\2N), ... ,ifJ~NI of jj12NI. 

(iv) Double N and go to (ii). 
We carry out these steps for K = 2 when V (<,6 ) is even 

and the lowest two eigenvalues of H I I) are nondegenerate. In 
this case the approximate mass gaps mN = ehNI - eiNI de­
pend on V(q) through m l and xl=(t/,oI!q!ifJ01 ). 

In the remaining sections we show that 
(1) The mass m '" =lim m N exists and the dimensionless 

ratio m==m", Iml depends only on the dimensionless pa­
rameter ZI = mllExi. 

(2) The dimensionless ratio m(Z) satisfies the recursion 
relation 

m(Z) = I(Z )m(h (Z)) 

for two elementary functions/(Z) and h (Z). 
(3) There is a unique positive value Zc for which 

Zc = h (Zc)~2.553 484 559 6885 .. · 

(4) m(Z) exhibits critical behavior, i.e., 

m(Z»O for Z>Zc' 

m(Z) ~O as Z ~Zc> 

m(Z) = 0 for Z<,Zc. 

(5) m(Z) is analytic on a complex neighborhood of(Zc' 
00 ]. 

(6) There are positive constants D 1,D2 for which 

D1(Z - Zc)v(21<.m(Z)<.D2(Z - Zc)';21, 
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when Z>Ze, where 

v(2) = - InJ(Ze )lIn h '(Ze )~0.817 26606···. 

We point out that the mass m", produced by the two­
state doubling algorithm may be regarded as an approxima­
tion to the mass gap of the exactly solvable one-dimensional 
spin chain solved by Stoeckly and Scalapino in Ref. 6. For 
that model Ze = 2 and v = 1. Hence the two-state doubling 
approximation yields the critical point to within 30% and 
the mass exponent to within 20%. Therefore, we do not ad­
vocate the use of the two-state doubling algorithm to obtain 
accurate approximation of the critical behavior of H ( 00 ). 

Rather our purpose is to illustrate the critical behavior in an 
exactly solvable case. Also, we show in the case K = 2 that 
the doubling algorithm can be viewed as a mapping r K from 
a space of K 2 X K 2 self-adjoint matrices into itself with the 
following properties: Let 

where MINI denotes a K 2 XK 2 matrix representation of 
jjlNI _ e\NIJ. Then MINI converges as N tends to infinity to a 
fixed point of the mapping r K' In the g:<,6 ': case there is a 
one-parameter family of matrices which get mapped into 0 
after infinitely many iterations. All other matrices get 
mapped ultimately into nonzero fixed points of r K with 
positive or zero mass gap. 

2. TWO-STATE DOUBLING ALGORITHM 

We carry out the algorithm for K = 2 and calculate ex­
plicitly the quantities of interest. When N = 1, jjOI = H(J), 
and 

jj\IIt/lYI(qi) = ej1lt/lY I(qi), 

for i,j = 1,2. Also, 

P 121_ 
2 -

where 

'/Ii,j =t/l\II(q l)tPjl l(q2) 

are the eigenfunctions of jj\11 + jj~1I. Thus 

jjl21 = P!fi[i1\11 + i1~11 + B(J)]P~I 
2 

= " [(elll + el'I)8,8 . ~ , ) t,' ).) 
i,i'= 1 
j,/ = I 

- €Xi.i'~,/ ] I'/Ii,j) ('/Ii',/I, 
where 

Xi,j=(t/l\II(q)lqlt/lYI(q). 

The lowest two eigenvalues and eigenfunctions of i1 121 are 
(ignoring the nullspace of P ~I) 

42 

e\21 = e\11 + e~11 - ((e~11 - e\II)2 + ex~)'I2, 
e~1 = e\11 + e~11 - €xi, 

tffl21 = tfffl(ql,q2) = a'/ll,l + b'/l2,2' 

tff221 = tffP(q"q2) = (11'1,2 + '1'2,1 )lv2, 
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where 

and 

a = [2(1 + Zi - Z,(1 + Zi)II2)]-1/2, 

b = (- ZI + (1 + Zi)1/2)1a, 

ZI = (e~11 - e\'I)I€xi. 

For general N we obtain the matrix representation 

EINI®I +I®EINI_ €XINI®XINI 

of jj (2N I in the subspace spanned by 

[t/l\NI(ql,· .. ,qN)t/ljNI(qN+ I ,···,q2NllL= I' 

Here 

( 

INI 

EINI= ~I 

and 

XN = (tfftl(ql, ... ,qN)lqllt/l~NI(q" ... ,qN)' 

The diagonal elements of XINI are zero because V(q) is as­
sumed to be even. The eigenvalues of jjl2NI satisfy the recur­
sion relations 

e\2NI = e\NI + e~NI_ ((eltl _ e~NI)2 + €2xt)ll2, 

e~NI = e\NI + e~NI - €X~, 

e~2NI = e\NI + e~NI + €X~, 
efNI = eltl + e~NI + ((e\NI_ e~NI)2 + ext)ll2. 

(1 ) 

The main quantities of interest are the masses m N de­
fined by 

mN = ei[1 - e\NI. 

From (I) it follows that 

( 
2 ...2, )1/2 2 m2N = mN + ~-XN - €XN, (2) 

and from the definition of x N it follows that 

2 1 kx~ + (- mN + (m~ + ext)1/2)Y 2 
€X2N = - €:leN' 

2 ext + ( - mN + (m~ + ext)1/2)2 

Defining the dimensionless parameter 

ZN =mN/€X~, 

we get 

Z2N = h (ZN)=2(Z~ + 1)112 

(3) 

(4) 

X((Z~ + 1)1/2 - I)I((Z~ + 1)'/2 + 1). (5) 

Equations (2) and (3) can be written in terms of ZN as 
follows: 

m2N = mNUI + l/Z~)1/2 - l/ZN I 
=mNJ(ZN)' (6) 

€X~ [1 + ((Z~ + 1)1/2 - ZNIY 
---

2 1 + ((Z~ + 1)1/2 - ZN)2 

==€X~k(ZN)' (7) 
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Iterating these formulas yields for N = 2\ 
L-l 

m2L = m 1 II I(Z2")' 
k~O 

L-l 

a;L = Exi II k (Z2")' 
k~O 

3. CRITICAL BEHAVIOR 

(8) 

(9) 

We establish certain properties of the elementary func­
tions h,f, and k from which the critical behavior of the model 
follows. 

Properties 01 h (Z): 
(1) h (Z) is analytic in the Z-plane slit from - i to i. 
(2) h (Z) is strictly increasing and strictly convex in 

[0,00); h '(0) = 0, h '( 00 ) = 2, and h (0) = O. 
(3) There is a unique value Zc in (0,00) for which 

h (Zc) = Zc' (We call Zc the critical value of 
Z,Zc = 2.553 484 559 688 537···.) 

It follows easily that as N-+ 00 , 

ZN!O if Zl <Zc, 

ZN=='ZC if Zl = Zc, 

ZNtoo if ZI>ZC' 

The convergence above is at least geometric. 
Properties oll(Z) and k (Z): 

(10) 

(1) I(Z) and k (Z ) are analytic in the extended Z-plane 
slit from - ito i. 

(2) I(Z) is strictly increasing on [0,00 l, 
1(0) = 0, and/( 00) = 1; 
k (Z) is strictly decreasing on [0,00], 
k (0) = 1, and k (00) = !. 

(3) I(Z)lk(Z) = h (Z)lZasfollowsfrom(4),(5),(6),and 
(7). Therefore/(Zc) = k (Zc) by Property (3) of h (Z). 
Formulae (6) and (7) and the properties above imply that the 
sequences ! m N ) and ! EX~) decrease monotonically as 
N = 2L-+ 00 . Therefore, they converge for all positive values 
of Zl. We denote their limits by moo and EX:', respectively. 

It follows from (10), Eqs. (8) and (9), and the properties 
of h,f, and k that as a function of Zl (with m 1 fixed), 

moo = 0 and EX:' >0 for Zl <Zc' 

m"" = 0 and EX:' = 0 for Zl = Zc> 

moo >0 and EX:' =0 for ZI>Zc' 

(See Fig. 1.) 

(11) 

Remark: Consider the mapping r from the first quad-

2 
EX", 

... ... , , , 
\ 

-+--~---- 21 o Zc 

FIG. 1. Critical behavior of the mass m~ and E.r~. 
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2 
EX 

--;. = Zc = 2.55 ... 
E.X 

-+----'---'--''---_ m 

FIG. 2. Action of r. 

rant to itself defined by 

r(m1,Exi) = (m2,Ex~). 
Each point on the nonnegative axes is a fixed point for r. 
Actually, these are the only ones since r is strictly monotone 
in each of its variables. The curve m/ EX2 = Zc is mapped 
into itself. A point on this curve gets mapped into another 
point on this curve closer to the origin under the action of r. 
A point lying below this curve gets mapped into a point clos­
er to the m axis. A point lying above this curve gets mapped 
into a point closer to the EX2 axis (see Fig. 2). The mapping r 
on the pair (m,Ex2) induces a mapping r 2 on the renorma­
lized 22X22 matrices M(NI described in the introduction. 

4. THE HIGHER SPECTRUM 

and 

Using Eqs. (1) and (2) we obtain 

e~2NI _ e(12NI = (m~ + CX~)1/2 + EX~ 
= m2N + 2EX~ 

e~NI - e\2NI = 2(m~ + CX~)1/2 
= 2m2N + 2EX~. 

Denoting the limits (as N-+oo) of these two equations 
by m'", and m::', respectively, it follows from (11) that (see 
Fig. 3) 

FIG. 3. The full spectrum. 

if ZI>Zc' 

if Zl".zc' 

if ZI>Zc, 

if Z.,Zc' 

m~ 

Isaacson et at. 43 



                                                                                                                                    

5. ANALYTICITY OF THE MASS m 

We define the dimensionless mass m by 

m(ZI)=m"" Iml = IT j(Z2')' 
k~O 

This may be rewritten as 

m(Z) = IT j(h k(Z)), (12) 
k~O 

where h k(Z) = hoho ... oh (Z). The functional equation 

m(Z) = j(Z)m(h (Z)) (13) 

follows easily. 
Formula (12) can be extended to include large complex 

values of Z. In fact for IZ 1 sufficiently large we have 

j(Z) = 1- liZ + O(lIZ 2
), 

so that 

To prove the analyticity of this product for IZ 1 sufficiently 
large it suffices to establish the uniform convergence of the 
series 

ktJ hk~Z) +O[hk~Z)]l 
For IZ 1 large, Ih (Z)I > (1 + 8)IZ 1 for some 8> 0 so that 
1 h k (Z ) 1 > (1 + 8)k IZ I. Therefore the series above is bound­
ed by 

00 I const I 1 00 1 I --- <-- I <00. 
k~O hk(Z) IZI k~O (1 +8)k 

Now the region of analyticity can be extended by using 
the functional equation (13). First m can be continued ana­
lytically from a complex neighborhood of (Z, 00], Z> Ze to a 
complex neighborhood of (h -I(Z), 00] because j and hare 
analytic. Also, from (10) it follows that h - k (Z) converges to 
Ze' Therefore m can be continued analytically to a complex 
neighborhood of (Ze' 00 ) by repeated applications of the 
functional equation. 

We remark that for theg:<p 4: casem l and Exi are analyt­
ic functions of the parameter g in a complex neighborhood of 
(0,00). It follows thatthemass moo (g) = m 1(g)m(ZI(g)) is ana­
lytic in a complex neighborhood of (O,ge)' 

6. THE EXPONENT v 

In this section we establish the following behavior of the 
masS near the critical point: there are positive constants D I , 

D2, and v for which 

m(Z) =D(Z)(Z -Ze)V (Z>Ze), (14) 

whereO<D 1<D(Z)<D2 < 00. 
The critical exponent v can be calculated explicitly in 

the following heuristic way. AssumeD (Z) is constant. Evalu­
ate (14) at two points ZI and Z2' take logarithms, and sub­
tract one equation from the other to obtain 

m(Z)) @1 - Ze) V = log __ I log . 
m(Z2) 2 -Ze 
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By choosing Z2 = h (Z 1) and using ( 13) we get 

v = log m(ZI) _ /IOg( ZI - Ze ) 
m(h (ZI))/ ' h (Zd - Ze 

,j ( ZI -Ze ) 
= logj(ZI)j log h (Zd - h (Ze) . 

The value of v is then obtained by taking the limit of the 
expression above as ZI !Ze: 

v = -logj(Ze)/log h '(Ze) (15) 

(explicitly v = 0.817 26606· .. ). 
Given the value of v in (15) we define D (Z ) by (14). By 

(13), D (Z) satisfies the functional equation 

D(Z) = I(Z)D(h (Z)), (16) 

where 

I(Z) = j(Z)[(h (Z) - Ze)l(Z - ZeW, 
Properties oj I (Z ): 
(1) I(Z) = 1 + O(Z - Ze) by (15) since lis 

differentiable. 
(2) I (Z) is strictly increasing on [0,00] becausej(Z) is 

strictly increasing and h (Z ) is strictly convex. 
1(0) = 0 and 1(00) = 2V. 

We show that 

o <DI=lim infm(Z)/(Z - Ze)" 
ZIZc 

< lim sup m(z)l(Z - Ze )v=D2 < 00. 
ZIZ,. 

In fact we obtain numerically that D (Ze )~0.48 .... Iterating 
(16) yields 

N 

D (h - N (Z)) = D (Z) II I (h - k (Z)). ( 17) 
k~1 

Fix Zo > Ze' Then the product in (17) converges uniformly as 
N-+oo for ZE[Zo,h (Zo)]' Therefore 

D2 <maxl D (Z ):ZE[Zo,h (Zo)] J IT I (h - k(h (Zo))), 
k~1 

DI>minID(Z):ZE[Zo,h(Zo)]J IT I(h -k(Zo)). 
k~1 

Remark: In an analogous way we can show that there 
are positive constants D 1- , D 2- and v' for which 

m'(Z) = D -(Z)(Ze - Z)V' (Z <Zc), 

where 0 <D 1- <D -(Z )<D 2- < 00 and 

v' = - log k (Zc )llog h '(Ze)' 

From Property (3) ofjand k it follows that 

v'=v. 
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Direct approach to the periodic solutions of the multidimensional sine­
Gordon equation 
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A number of identities for multidimensional theta functions and their derivatives are derived. 
Application to the nonlinear partial differential equations is exemplified for the sine-Gordon 
equation. In consequence, the multidimensional sine-Gordon equation can be reduced to a 
functional equation, and then to a set of algebraic equations. Several particular cases are also 
discussed. 

PACS numbers: 03.40.Kf 

1. INTRODUCTION 

The problems associated with nonlinear partial differ­
ential equations (NL-PDE) have been in the center of interest 
of theoretical physics for more than fifteen years. This inter­
est is still growing. More and more problems arise and await 
solution, mainly in nonlinear optics, plasma physics, super­
conductivity, quantum field theory, and the like. 

There are, however, some problems which seem to be 
particularly important for the further development of the 
theory and its application in physics. In our opinion, the 
multidimensional periodic solutions ofNL-PLDE's particu­
larly ofthe sine-Gordon (sG) or Korteweg-de Vries (KdV) 
equation. can well be considered among these problems. 

There is a vast literature on the subject of periodic solu­
tions ofNL-PDE's, 1-7 mainly inspired by the inverse scatter­
ing method. 

As is known, in the case of KdV or sG equations with 
the imposed requirement of periodic solutions, the applica­
tion of the inverse scattering formalism leads to expressions 
involving an abstract theta function (e-f). However, as yet 
only the periodic solutions in (1 + 1 )-dimensional space have 
been thoroughly investigated. 

In the present paper, we intend to give an insight into 
the question of multidimensional solutions of the sG equa­
tion, generalizing to some extent the well-known results for 
the (1 + 1 )-dimensional case. 

The outline of the paper is as follows. In the first part we 
derive some fundamental identities for the abstract multidi­
mensional e-f and its derivatives. Next, using the previous­
ly-derived relations, we formulate a few theorems that re­
duce the question of the solution of a multidimensional sG 
equation to a purely algebraic problem. Some preliminary 
results concerning these problems were already announced 
briefly in Ref. 8. 

We want to emphasize that our approach is consider­
ably different from that presented in papers on abelian inte­
grals and their application to the Riemann e-f in soliton 
theory. We are interested here in algebraic identities, recur­
sion formulas for the e-f and, most of all, for its second 
derivatives, which would be useful directly in the analysis of 
the multidimensional sG equation. 

2. IDENTITIES FOR THE THETA FUNCTION 

We provide the following definitions: 
i. C K-the g-dimensional complex vector space; 
ii. Z K-the g-dimensionallattice, i.e., the set of g-di­

mensional vectors k with integer (real) components k; (k; 
= 0, ± 1, ± 2, ... , i = 1,2, ... g); and 

iii. D K-theg-dimensional "die" (cube), i.e., the set of g­
dimensional vectors £ with components E; taking only two 
values, ° or 1 (E; = 0, 1, i = 1,2, ... ,g). 

We adopt here the following definition of an abstract or 
multidimensional e-f, of argument ZEC K 1.3-7.9: 

e(zIB) = I exp[i1r(2z·k + k·Bk)], (1 ) 
kEZ' 

whereB is theg-dimensional symmetric complex matrix, z·k 
denotes the scalar product 

z·k= t z;k;, 
;= 1 

and the sum is over the lattice Z K: 

I = f , ... , f 
kEZ 101 k, = - 00 kg = - 00 

The series (1) will be convergent if there exists C> 0, 
such that 

Im(k·B k»C (k·k). (2) 

Matrix B is known as the period's matrix, if the e-f is 
defined by means of abelian integrals. Although we do not 
proceed in this way, our results can supply some information 
to the analysis of e-ffrom the abelian-integral point of view. 
An exhaustive analysis of the e-f in terms of abelian inte­
grals and differentials on a Riemann surface can be found in 
the previously cited papers. Some algebraic properties of the 
e-f 's are discussed in Krazer's monograph9 devoted to the 
e-fs with characteristics, which form a broader class than 
the e-fs considered here (cf. also Ref. 4). 

The function defined by (1) is called by several authors 
an abstract e-f, while others prefer to call it multi-dimen­
sional e-f. Since, in fact, it is a scalar function of g-indepen­
dent arguments, the first designation seems to be less legiti­
mate. However, we use both terms equally. 
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The 8-f given by (1) is quasiperiodic; it has the following 
properties 1.5.7.9: 

8(z + qlB) = 8(zIB), qeZ g, (3) 

8(z + BiIB) = lexp[ - i1r(2zj + BD)] j8(zIB), (4) 

8( - zlB) = 8(zIB), (5) 

where Hi is thejth column of matrix Band BD is istj,j 
element. 

Applying (3) repeatedly we have for each qeZ g and 
zeCg 

8 (z + BqIB) = exp[ - i1T(2z·q + q.Bq)]8 (zIB). (6) 

One can prove also that 

[8(zIB)f 

= L exp[i1r(2eoz+eoBe)]8(BeI2B)8(2z+Bel2B)· (7) 
EED' 

Proof 

8 2(zIB) 

= L L exp{i1r[2(m + n)oz + moBm + noBn]} 
meZ R neZ R 

= L L exp{i21r[qo(z + Bq) + (n - q)oBn]) 
qeZ'" neZ R 

= L exp[i1r(2zoq + qoBq)] 8 (BqI2B ), (8) 
qeZ If 

where the sum is over the lattice Z g. 
Substituting q = 2p + e, where peZ g, eeD g, Eq. (8) 

takes the form 

L exp[i1r(2ez + eoBe)8(Bel2B)] 
OED' 

x L exp{i1r[2po(2z + Be) + poBp]} 
peZ' 

= L exp[i1T(2e·z + e.Be)]8(Bel2B) 
EEDIf 

X8(2z + BeI2B). (9) 

Observe that the sum is now over the "die" D g and thus 
it contains only the finite number of elements (2g). 

For the case z = meZ g we have 

8 2(!mIB) = L (- 1)(m'Eiexp(i1reoBe)8 2(Bel2B)· (10) 
£EDlt' 

Relations (7), and also (10), can be inverted. If we 
chang~ the variables, Z-+Z + !6, (6eD8) in (7), multiply by 
( - 1 )(E '11), and then sum over 6, since 

L (- l)E.II( - 1)"'-11 = 2goE E" (11) 
lIED' • 

(where 0 •.• , is the Kronecker delta), we obtain 

8 (2z + BeI2B) = exp[ - hT(2eoz + eoBe)] 
2g8(BeI2B) 

XL(-1)"1I82(Z+~6IB), (12) 
/lED" 

or 

8(2zl2B)=2-
g
8-1(012B) L 8 2(z+!6IB). (13) 

lieD" 

47 J. Math. Phys., Vol. 24, No.1, January 1983 

Here the sum again is over the "die" D g. 
Substituting z = 0 or z = e = 0, (12) yields, 

respectively, 

8(BeI2B) = 2- g12 [L (- 1)"'1I8 2(!6\B)]112 
lieD" 

Xexp[ - i1reoBe12], (14) 

or 

8(0\2B) = 2 -gl2 [ L 8 2(!6IB)] 1/2. (15) 
lieD" 

For the case of only one variable all the formulas (7)­
(15) simplify to already-known results. 10-12 For example, re­
lation (13) represents the multivariable variant of the Landen 
transformation. 10 

One can prove9.12 that 

L exp[i1r(2noz + noBn)] 
neZ" 

= ( - i) - g/2(det B )-1/2 L exp[ - i1r(z·n)oB -I(Z + n)], 
neZ If 

(16) 

which in 8-flanguage is 

8 (z\B) = ( - i) - g12(detB )-1/2exp [i1rZ 0B -IZ ] 

X8(B -izi - B- 1
), (17) 

and is the multivariable version of the modular 
transformation. 8-10.12 

Combining (17) and (13), we obtain another useful 
representation: 

8(zIB)8(0\B)= L exp[i1r(2eoz+ eoBe)]8 2(z+ Be\2B), 
EEDR 

(18) 

or 

[ ]

-112 
8 (z\B) = .~" exp(i1reoBe)8 2(BeI2B) 

X L {exp[hT(2eoz + eoBe)]8 2(z + Bel2B I}· 
EEDS 

(19) 

Similarly, one can derive the relation between 8-f's of 
matrices Band 4B. Indeed, substituting k = 2n + e, neZ g, 
eeD g, by definition (1) we have 

8(zIB) 

= L L exp{ i1r[2(2n + e)oz + (2n + e)oB (2n + e)l! 
DEZ" EED' 

= L exp[hT(2eoz + e·Be)] 
EEDIf 

X L exp{i417"[(z + Be)oz + noBn]}. (20) 
neZ' 

Thus finally 

8(zIB)= L exp[i11"(2eoz+eoBe)]8(2(z+Be)\4B). (21) 
EeD8 

Shifting the argument z-+z + ~6, mUltiplying by 
( - 1 )Ik', and making use of( 11), relation (21) can be inverted: 
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2g8 (2(z + Bf.') 14B ) exp [i1T(2f.'·z + f.' ·Bf.')] 

= L (- 1)l>"'8(z + ~8IB). 
l>ED" 

Thus for f.' = 0, 

8 (2z14B ) = 2 -g L 8(z + !~IB), 
bED' 

and 

8(zIB) = 2 -g L 8 (!(z + ~)I~B). 
l>ED" 

(22) 

(23) 

(24) 

Similarly, from (6), after an appropriate manipulation 
of indices, the product of the 8-f 's takes the form 

8(zIIB)8(Z2IB) 

= L exp[i1r(2n·zz + n·Bn)]8 (ZI + Zz + BnI2B) 
nEZ S 

EEDlf 

or 

8 (zIIB)8 (zzIB) 

= L exp[i1T(2f.·z l + f.·Bf.)] 
EEDlf 

X8(zl - Z2 + Bf.12B)8(zl + Z2 + Bf.12B). (26) 

The first sum in (25) is over the lattice, while the second one is 
over the "die"; thus it is finite. If z, = Z2, relation (26) re­
duces to (7). 

Then comparing relations (25) and (8), it follows that 

L [8(2z +BnI2B) - 8(BnI2B)] 
nEZ S 

Xexp[i1T(2n·z + n·Bn)] =0, 

and next 

L exp(i1TD·Bn) [Jz• 8 (zI2B)] z ~ Bn =0, 
DEZ" 

(27) 

(28) 

where here and henceforth the derivatives with respect to Zi 

(i = 1,2, ... ,g) are designated by J
Zi

' 

Next we derive a few indentities relating the 8-fs of 
parameters Band 2B in the spirit of the Landen 
transformation. 10 

First, substituting Zi-Zi + !~ in (25) and summing 
over~, by (II) we have the identity 

8(Z2 - zI12B )8(Z2 + zll2B) 

=2- g L 8(Zl+~~IB)8(Z2+~~IB), (29) 
bED' 

for arbitrary ZI and Z2' 
In particular, putting Z2 = ZI + ! ~, ~ED g, we obtain 

the relation 

8 (2z + ~~12B)8 (!~I2il) 

=2- g L 8(z+~vIB)8(z+!(v+~)IB), (30) 
vEDg 

which for ~ = 0 reduces to (l3) or (IS). Now substituting 
Z_Z +!~ in (l3), and comparing with (30) we get the 
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identity 

e(~~12B) L 8 2
(z + 1~ + 1~IB) 

beD/( 

=8(012B) L 8(z+!vIB)8(z+!(~+v)IB). (31) 
VED~ 

On the other hand, substituting ZI = 0 in (29), we have 

8 2(zI2B) = 2 -g L 8(!~IB)8(z + 1~IB), (32) 
l>ED" 

which is the representation of the square of the 8-f in terms 
ofthe sum oflinearly independent functions 8 (z + !~ I B ), (cf. 
Appendix B). 

Similarly, relation (30) allows us to determine uniquely 
8 (2z 12B ) by 8 (z + ~v IB ). The inverse relation is not unique, 
however. Indeed, multiplying (30) by ( - I t ... and summing 
over ~EDg, we obtain 

L L (-I)l>· ... 8(z+!vIB)8(z+!(~+v)IB) 
u.el)S" vEIY 

= 2g L (- 1)l>· ... 8 (!~12B)8 (2z + !~12B). (33) 
... ED" 

Substituting ~-~ + v, the left-hand side of (33) re­
duces to a perfect square and (33) becomes 

[ L (- 1)l>·v8(z + !vlB )]2 
veDK 

= 2g L (-l)l>· ... 8(!~12B)8(2z + !~12B). (34) 
.... eDK 

Taking the square root, by the standard technique we 
find (for: IRe(zi)1 <i) 

8(z + !vIB) 

= 2 -g/2 L 'Tl>( - I)l>'v [ L (- I)l>· ... 
beD/( ..... EDK 

X8(i~12B)8(2Z+1~12B) 11~2 (35) 

where 'Tl> are the square roots of unity (arbitrarily chosen), 
i.e.,'Tl> can take the values + 1. 

The choice of the set of 1'", determines the variety of 
solutions 8 (zIB) and the number of different solutions is 2g

, 

where g is the dimension of the die D g. Thus putting 
T", = ( - Ir"', we can denote these different solutions in (35) 
by 8 T (z + 1vIB). 

It is also possible to change the shift of an argument of 
8-ftotheshiftintheB domain. Let us consider 8 (ziB + Q), 
where Q denotes a symmetric matrix whose elements q ij are 
(real) integers. We have 

8(zIB+ Q) 

= L (- It'Qn exp[i1T(2z·n + n·Bn)] 
neZ/I: 

= L (- l)q·n exp[i1T(2z·n + n·Bn)] 
neZ lf 

= 8(z + !qIB), (36) 

where q = (Qll,g22, ... qGG)' 
These formulas allow us to confine the variety of B ma­

trices to a set of matrices whose elements have real parts that 
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satisfy 

IRe bij I.;;; 1/2, 

because one can always subtract an integer. 

3. APPLICATION TO MULTIDIMENSIONAL sG 
EQUATION 

(37) 

In the application to NL-PDE we require the relations 
involving partial derivatives of the 8-f. We report here a few 
formulas involving the first and the second derivatives. 

Theorem I: For any 8 (considered here as an arbitrary 
parameter, but in further application usually choosen as 
8EJ)g), 

az , In[ 8 (z - !8IB)8 -I(Z + !8IB)] 

= I l[Ii 8
2
(z + ~~IB) 

ILED' IL 8 2(zIB) , 
(38) 

and the coefficients I[I~ (8) are independent ofz and given by 

1[I~(8) = I (- I)"IL 

EEDJor 

aw [8 (2w + BeI2B) exp(i21TW·e)] I .. = -!b 
X ' , , 

2g8(BeI2B) 
(39) 

which means that 1[I~(8) are expressed as the finite sum of 
the derivatives of the 8-f 's, but now at fixed points deter­
mined by the set Be. 

Proof The numerator of the left-hand side of (38), tak­
ing into account (25), can be written as 

aWi [8(z - wIB)8(z + wIB)] .. = -Jb 

= awi (8(2w + Bel2B )8(2z +BeI2B) 

Xexp{hr[2e·(z + w) + e·Be]}),.,= -jb 

= I {aW , [8(2w +BeI2B) exp(i21TE'W)J} .. = -1b 
EEDX 

X 8 (2z + BEI2B ) exp [i1T(2e·z + e·Be)]. (40) 
I 

Since the left-hand side of (45) represents the numerator of 

aziaz,ln[8(zIB)), 

relation (45) proves the theorem (42), yielding the coefficients 
in form (43). In this manner the second derivative of In 8 
reduces to the sum of 2g elements. 

The collection of identities for the 8-f 's can be supple­
mented by another one, which will become important later 
on. The following identity holds: 
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Next, using formula (12), relation (40) becomes 

I I 2-g(-l)"1L8-I(BeI2B)82(z+!~IB) 
.....EDx EEDX 

xaw,[8(2w + BeI2B) exp(i21Te·w)] .. = -lb' (41) 

Relation (38) is useful, for example, if one wants to dis­
cuss periodic solutions of the KdV equation. Obviously, the 
form of coefficients I[I~ (8) is not determined uniquely and 
using the previously given identities, one can easily find oth­
er equivalent forms. 

Let us now derive the formula for the second (mixed) 
derivative of the 8-f. 

Theorem II: 

a a In[8 (zIB)] = '" n') 8
2
(z + !8IB) (42) 

Zi Zj b~' b 82(zIB) , 

where the coefficients n ~ are independent of the variable z 
and are given by 

EEDK 

awJw [8 (2w + BeI2B) exp(i21Te'w)] 1 .. =0 
X ' '8(BeI2B) . (43) 

Thus, similarly, as in the previous formula, the n ~ are 
given in the form of a finite sum (over die D g) of the 8-f 
derivatives, again at fixed points. Another, equivalent form 
of the coefficient n ~ can be found in Ref. 8. 

Proof Using the definition (1) let us consider the form 

8 (ziB )az az 8 (zIB) - az 8 (ziB )az 8 (zIB) 
• } I J 

= !{awiaw,[8(z + wlB )8(z - wIB)J}w=o' (44a) 

By the relation (25), as in Theorem I, the right-hand side of 
(44a) can be written 

aw,aw, [8(z-wIB)8(z+wIB)] 

= I aw,aw,[8(2w + BeI2B) exp(i21TW·e)] 
.ED" 

X 8 (2z + Bel2B) exp[i1T(2z·e + e·Be)). 

Thus, applying (12) we finally find 

Theorem III: 

[8(z + ~eIB)8(zIBW 

= 2 -4g I 8We ± 8) + !"I!B) 
b,V,J.1.11EDg 

X8We ± 8) + !(v + ~ + ,,)I!B) 

(44b) 

(45) 

X 8 U8 + !~IAB )8(z + A8 + !vIAB), (46) 

where eEJ) g and is fixed. The signs in the first two terms on 
the right-hand side can be either both positive or both nega-
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tive. Relation (46) can be proved by applying the relation (29) 
three times. Indeed, 

r.h.s. of (46) = 2 - 3g I 8 (~(e ± b + f.L + v)I!B) 

X8(!(v + f.L)I!B )8Ub + ~f.LI!B) 

X 8 (z + !b + !vl!B). 

Changing the indices f.L + v-f.L, 

b,V, .... EDK 

X 8 (!f.LI!B)8 Ub + !(f.L + v)I!B) 

X 8 (z + !b + !vl!B) 

= 2 - 2g I 8 (!(e + b + f.L)1!B)8 (!f.LI~B) 
b.~EDR 

x8 (z + !(b + f.L)I!B)8 (z + !f.LI!B) 

=2- g I 8(z+!eIB)8(z-~eIB) 
..... EDK 

X 8 (!f.LI!B )8 (z + !f.LI!B ) 

(47a) 

=8 Z(z+!eIB)8 2(zIB), (47b) 

which concludes the proof. 
In Appendix B we show that the functions 

8 (z + !b + !f.L I!B ) for b, f.LED g form a set oflinearly inde­
pendent functions (for fixed B). Thus, relation (46) represents 
the expansion of[8 (z + !eIB)8 (ziB W in terms of the finite 
sum of the linearly-independent functions 
8(z +!b + ~f.LI!B). Let us try to apply the formula (42) tothe 
multidimensional sG equation: 

N 

I a:, 1/1 = sin 1/1. (48) 
k~l 

It is convenient to write the sG equation as above and 
eventually introduce the time t by the substitution Xn = it. 
By d (dEDg) we denote theg-dimensional vector 

d = (1,1, ... ,1). (49) 

Koziel and Kotlarovz (see also Refs. 1 and 7) found that 
the g-periodic solution of a (1 + 1 )-sG equation has the form 

1/1 = 2i In[8 (z + !dIB)8 -1(zIB)] + C, (50) 

where z = ax + at + y is a g-dimensional vector; a, a, y 
and C are constants. 

We shall try to determine these constants, particularly 
a and a, in relation to B, and also to generalize our results in 
order to describe more than only the (1 + 1 )-dimensional 
case, e.g., the (N + 1)- or better [(N - 1) + 1]-dimensional 
case. 

We assume the solution 1/1 is in the form 

1/1= 2iln[8(z + !dIB)8 -1(zIB)] + (1 + 1)1T/:l, (51) 

where z = (Zl' zz, ... ,Zg) and 
N 

zp = I apjXj + ZpO' P = 1,2, ... ,g. 
j~ I 

Here apj and ZpO are constants. 

(52) 

The set apj forms the matrixgXN(in general rectangu­
lar!) We denote 
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N 

Apq = I apjaqj . 
j~l 
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(53) 

Since 

a: = f, (ax Zpax Zq)az az , Ie L Ie If. P q 
(54) 

P.q~ I 

the sG equation (48) becomes 

! Apqazpazq 1/1 = sinl/l, (55) 
P.q~ I 

and by (51) and (42) takes the form of the functional equation 

.{; L~ I Apqil';' ± !b.,d ]F(Z;eIB) = 0, (56) 

where 

F(z;eIB) = 8 2(Z +!d + !eIB)8 2(zIB) 

- 8 Z(z + !elB )8 Z(z + !dIB). (57) 

b'.d is the Kronecker symbol (1 only if e = d, otherwise 0). 
Apq andil!q are given by (53) and (43), respectively. Equation 
(55) will be satisfied, for example, iff or each e#O (eEDg) 

g 

I Apqil';' ± !b'.d = O. (58) 
P.q~ I 

This system of 2g - 1 simultaneous equations determines 
the set of gIg + 1)/2 unknown "scalar produces" A pq (since 
Apq = Aqp and il!q = il n The equation for e = 0 in (58) 
drops out, since F(z;OIB) = O. 

For g = 0 or 1 the system (58) always has a solution for 
each symmetrical matrix B [satisfying (3)] if 

detf1!q#O, (59) 

since then 2g 
- 1 = gIg + 1)/2. In the case of g = 1, we ob­

tain the usual pendulum solution. For g = 2 we have the 
two-periodic solution, which is more general than the com­
monly known solutions expressed by 4 arctan [f(u)g(v)] + c. 
This is due to the fact thatfandg are the elliptic functions, so 
that the above solution can always be transformed to a form 
involving one-dimensional t1-functions, whereas the two-di­
mensional 8-f allows the representation in terms of one-di­
mensional t1-functions only in exceptional cases.9 An equiv­
alence holds if BII = B22 •

13 

In the case g > 2, the system of equations (58) is overde­
termined. This indicates the existence of additional condi­
tions on elements of matrix B, and/or constraints imposed 
onApq . 

We intend to discuss these problems in a future paper. 
Ifthe functions F (z; e I B ) (indexed bye) are linearl y inde­

pendent, then condition (58) is sufficient for (51) to be the 
solution of the sG equation (48). Otherwise, it is necessary to 
find an appropriate set of linearly-independent functions 
and to express F(z;eIB) in terms ofthese functions. 

In Appendix B we show that for fixed B, the set of 
functions 

!8(z+!f.L+!vIB))".", (60) 
doubly indexed by the pair f.L, v E D g, form the set of linear­
ly-independent functions. 

Writing (57) in a more suitable form, 

F(z;eIB) = 8 Z(z + !(d - e)IB)8 2(zIB) 

- 8 2(z +!d + !(d - e)IB)8 2(z + !dIB), (61) 
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one can now apply the formula (46). Observe that the second 
term on the right-hand side of (61) is simply the first one, 

with the shifted argument z--.z + !d. Thus, after some rear­
rangement (61) becomes 

F(z;eIB) = 2 -4g L 8We' ± a) + !1J11B)8We' ± a) + !(v + ~ + 1J)11B) 
lI.v .... 1\ED· 

X [8ua + !JLI1B) - 8(la + !(d - JL)llB )]8(z +!v + lallB), (62) 

or, if we apply (29), 

F(z;eIB)=2- 3g L 8(!(E'+a+v+~)I!B)8(!(v+~)I!B) 
lI.v . ....,D· 

X [8Ua + !~I!B) - 8(la + !(d - ~)11B)]8(z +!v + 1aIlB), (63) 

where e' = d - E. Since the 8 (z + !v + 1a I lB ) are now lin­
early independent, the functional equation (56) takes the 
form of the algebraic system of 22g simultaneous nonhomo­
geneous equations (with respect to Apq) 

t: [ ± Apql1ft_£' ± la£,.o] 
£ elJI' P.q = 1 
£;o'd 

X L 8We'+a+~+v)I!B)8(!(JL+v)I!B) 
j.LED" 

X [8ua + !~11B) - 8(la + !(d + ~)I!B)] 
=0, (64) 

for each a, veD g. 

Since the last sum in (64) can be written also as 

L 8 (!(e' + ~mB)8(!(~ + a)I!B) 
....,D· 
X [8Ua + !(~ + v)llB) - 8Ua + !(d + v + ~)11B)], (65) 

performing the summation over e', we finally obtain 

~ L~ 1 ApqSf; ± 18 (!~I!B)]e (!(a + ~)I!B) 
X [8(la + !(~ + v)11B) - 8(la + !(d + v + ~)11B)] 
=~ ~~ 

for each pair pair a, veD g
• We have denoted here 

Sf;= L {}~·~ .. e(!(E'+JL)I!B)· 
E'elJ" 

.';o'd 

(67) 

[In principle, the summation is over all e', but the element for 
E' = d vanishes, since F (z;O IB ) = 0.] 

We have thus far proved that the multidimensional sG 
equation in the form (48) has the solution (51) if and only if 
the system of simultaneous algebraic equations (66) is satis­
fied (for each a,vEIF). Relation (58) is the particular case of 
(66) if the appropriate determinants in this equation do not 
vanish. Similarly, one can analyze the other particular cases. 

In general, the system of equations (66) is overdeter­
mined; it contains 22g equations for each pair v, a and there 
are only gIg + 1)/2 variables A pq to be determined. We 
should, however, bear in mind that gIg + 1)/2 complex ele­
ments of the symmetric matrix B must also be determined. 

We have discussed the solution in the form (51), i.e., 
choosing C = 0 or 11' in the relation (50). These are the unique 
values of C. The proof is given in Appendix A. 
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If there exists a solution of the system (66), we have ag­
periodical solution of the sG equation. The dimension of the 
physical space, e.g., 1 + 1,2 + 1, etc., is hidden under the 
scalar productsApq • HavingApq as the solution of (66), it is 
necessary to find apj or, better yet, the class apj that fulfills 
(53). This is an elementary algebraic problem, but the result 
certainly depends on the assumed dimension of the physical 
space: N + 1. 

In consequence, we have obtained a g-periodic solution 
in (N + 1 I-dimensional space, which is then reminiscent of 
the multidimensional g-soliton solution. 

4. SUMMARY AND CONCLUSIONS 

By deriving a variety of algebraic identities for the mul­
tidimensional theta function and for its derivatives, we ar­
rive at the conclusion that the sG equation can be reduced to 
a functional equation and even to a system of simultaneous 
algebraic equations. 

Thus, the existence of a multidimensional solution of 
the sG equation in form (51) involving theta functions de­
pends on the solvability of the system of algebraic equations. 

The discussed solution represents a natural generaliza­
tion of the (1 + I)-dimensional case. Moreover, the derived 
relations give useful formulas for the determination of the 
constants appearing also in the simplest (I + 1 I-dimensional 
case. 

A rather fascinating and deep resemblance occurs be­
tween the multisoliton and multiperiodic solutions of the sG 
equation. This resemblance is of practical importance: the 
methods of soliton theory are better developed whereas the 
multiperiodic solutions concern the more typical physical 
situations that arise in a bounded region. 

Yet one also senses the essential differences, particular­
ly in the more-than-( 1 + 1 I-dimensional world. 
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APPENDIX A 

Below we prove that the constant C appearing in (50) 
takes only two different values: 0 or 11'. Substituting (50) into 
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(55) we find 

<~ {L~ 1 Apqn~q + ~S£,d COS C ]F_(Z;EIB) 

+ ~ S.,d sin CF+(Z;EIB)} = 0, (AI) 

where 

F+ (z;EIB) 

= 8 l(Z +!d + ~EIB)8 2(zIB) 

± 8 2
(z + !EIB )8 2(z + !dIB), (A2) 

and the remaining symbols were defined previously, [Apq is 
given by (53); n~qby (43); d by (49)], F _ is equal, of course, to 
the Fin relation (57), If(Al) holds for any z, it holds also for 

Z + !d. But 

F ± (z + !d;EIB) = ± F ± (z;EIB). (A3) 

Thus we have 

£~. {LJ; I Apqn ~q + ~8f.d cos C ]F _(z;EIB) 

~£dF+(Z;EIB)} =0. 4 . 

Adding (A I) and (A4) one obtains 

(sin C)F +(z;dIB) = 0, 

Ifsin C #0, (AS) by (A2) yields 

8 2(zIB) = ± i8 2(Z + !dIB). 

(A4) 

(AS) 

(A6) 

(A6) substituted into (50) reduces the whole solution to con­
stant. Therefore sin C = 0, and of course our choice of 
C = (1 ± 1)1712 is justified, 

APPENDIX B 

According to A.!, Markuschevich,4 a 8-fofrange n is 
defined as follows: 

8 n [X](z;A) = I, exp {il7(nrn + X)·[2Z + ~(nrn + X)]}, 
mEZr..: n 

(BI) 

where A is symmetrical matrix satisfying the condition (3), n 
is a positive integer and X is a vector with integer compon­

ents Xi and 

(B2) 

By analogy to the previously introduced nomenclature, one 
can write 

(B3) 

which means X belongs to g-dimensional die of magnitude n. 
(In this sense the die D II used previously would be D ~ .) 

Markushevich states that for fixed g,A, and n, the set 

{8n [x](z;A )}x' XED~, (B4) 

in X forms the set of linearly-independent functions and the 
total number of these functions is nil. 

Let us consider 8(z + (lIn)En IB), where EnED~. We 
get 

8 (z + ~ En IB) = I exp{il7[2S0(Z + ~ En) + soBS]} 
n EZ~ n 
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xfn~ m~' eXP{[2( Z + ~ En }rnn + Xn) + (rnn + Xn) 

B(rnn +XnJ]}, (B5) 

where instead of the sum over sEZ II we put S = nrn + Xn' 
rnEZ ir, Xn ED ~. After simple rearrangements, (B5) becomes 

I exp(i217EnOXnln) 
X"E:D~ 

x I exp(il7[2(rnn + Xn)'Z + (rnn + Xn)oB(rnn + Xn)] l 
fflt=Z'I 

= I exp(i217En °Xn In)8n [Xn ] (z;nB), (B6) 
XnED~ 

Thus 8(z + (lIn)En IB ) is expressed by a8-fofrangen. 
Since 

n- g I exp[i217P(x-x')In] 
X,!£D~ 

g n g 

= n - Ii II " exp (i217fiCL - X :lIn] = II S , L.. x":\,, 
i=) E., =0 i= 1 

(B7) 

the inverse matrix exists and hence the determinant of the 
matrix exp(i217E"Xnln) in (B6) does not vanish. Therefore for 
fixed nand B, the functions 8 (z + (lIn)En IB) indexed by 
En ED ~ are also linearly independent. 

For example, if n = 2, 

8 (z + ~!-LIB), f.LED L 
ifn = 4, 

8 (z + !f.LIB), f.LED!, (BS) 

are linearly independent, respectively. 

But if f.LED 1, putting f.L = 2v + 11 and v, 11 ED ~, we 
obtain 

8 (z + !!-LIB ) = 8 (z + !v + !l11B ), (B9) 

and in conclusion the set e (z + !v + !l11B ), v, 11 ED ~ also 
forms a set of linearly independent functions. 
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Existence and asymptotic behavior of Pade approximants to the Korteweg­
de-Vries multisoliton solutions 
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The summation procedure of the Pade type is applied to the perturbation expansion of the 
sol ution of the potential Korteweg-de-Vries equation (K.d. V.), introduced by Rosales. For the N­
soliton solution without background the [In - l)1n] Pade approximants are shown to exist for 
n <,N. Their asymptotic behavior is investigated and it is found that it corresponds to a system of n 
solitons with the leading velocity parameters. The analogous results for the K.d. V. then follow in 
agreement with some previous numerical observations. 

PACS numbers: 03.40.Kf, m.30.Mv. 02.30.Lt 

1. INTRODUCTION 

Explicit multisoliton solutions are known for several 
nonlinear partial differential equations. For the Korteweg­
de Vries (K.d.V.) and nonlinear cubic Schrodinger equation 
the classical procedure for obtaining them is based on the 
associated linear eigenvalue problems according to the pion­
eering works by Gardner, Green, Kruskal, and Miura I and 
Zakharov and Shabat. 2 More generally, any initial value 
problem is reduced to a linear problem. 

A direct method for finding multisoliton solutions was 
used by Hirota3 and a systematic approach based on pertur­
bation expansions was proposed by Rosales.4 For several 
classical nonlinear equations explicit sums of the perturba­
tion series were obtained in the multisoliton case, while more 
generally, the formal sums were shown to satisfy linear inte­
gral equations (such as the Marchenko equation for K.d. V.). 
This method, in spite of some algebraic labor required by the 
computation of the perturbation series, seems to be quite 
general and suggests the investigation of systematic summa­
tion procedures. 

The rational approximations ofPade type (P .A.) proved 
to exhibit some interesting features for the potential K.d. V. 
equation. In fact the [(n-l)ln] reproduce exactly the N-soli­
ton solution for n = N, 5 and bound it from below for n < N. 6 

Moreover, numerical evidence was found that for n < N the 
[(n - l)ln] P.A. behaves asymptotically for t _ + <Xi as a 
system of n solitons having the same parameters as the n 
leading solitons of the exact solution. 7

•
8 Even though the 

numerical examples were restricted to very low values of N 
and n, it was conjectured that the result would hold for any 
value of Nand n and also in presence of a background. Anal­
ogous numerical results were found for the modified K.d.V. 

In this paper we rigorously prove the existence of 
[In - l)/n] P. A. to a N;;'n soliton solution and the above 
conjecture on their asymptotic behavior for the potential 
K.d.V. equation. The method we use should allow exten­
sions to other nonlinear equations. 

The plan of the work is the following. In Sec. 2 we re­
view the Rosales procedure. In Sec. 3 we prove the existence 

of the [In - l)1n] P. A. In Sec. 4 we describe the asymptotic 
behavior of a multisoliton. In Sec. 5 we quote some prelimi­
nary results related to the asymptotic behavior of the 
[In - l)1n] P.A. which is finally proved in Sec. 6. 

2. KORTEWEG-DE VRIES EQUATION AND PADE 
APPROXIMANTS 

The standard form of the Korteweg--de Vries equation 
is given by 

(2.1) 

and letting u = - Ux the potential K.d.V. equation reads 

Ut + Uxxx - 3..iU/ = O. (2.2) 

The perturbation expansion of (2.2) can be written 

= 
u= I (-..irUn , (2.3) 

n=O 

where Uo is a solution of the linear homogeneous equation 

Uo.t + Uo,xxx = 0 (2.4) 

and Un for n;;. 1 satisfy the linear inhomogeneous equations 

n-l 
Un,1 + Un,xxx = 3 I Uk •x Un - I - k.x . 

k=O 

(2.5) 

Rosales4 has shown that choosing the solution of (2.4) as 

Uo = i e'(kx + k 't)df1(k ) , (2.6) 

wheredf1(k ) is an appropriate measure on the complex plane, 
then Un can be written 

exp[i nil (kj X + k; t)] 
Un = in ( __ ...:.J_=_I _____ _ 

Jet! + I n 
II (kj + kj + I) 
j=1 

Xdf1(kd ... df1(kn+ I) n;;.l. (2.7) 

The usual multisoliton solution corresponds to a discrete 
positive measure with support on the positive imaginary 
axis, namely 
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(2.8) 

The kj must all be distinct and we order them in a decreasing 
sequence 

kl > k2 > ... > kN . (2.9) 

The coefficients of the perturbation series are then given by 

(2.10) 

where (.,.) denotes the scalar product in RN, ifJ is a vector of 
RN defined by 

ifJj = aj exp [ - ~ kj(x - vJ)], Vj = k j, j = 1, ... ,N 
(2.11) 

and A is a N X N matrix defined by 

Ai) = ifJiifJj , ij = 1, ... ,N. 
k i + kj 

(2.12) 

The perturbation series can be summed for 1,1, 1 small enough 
and analytically continued to give 

(2.13) 

Indeed, since the kj are all distinct A is a positive matrix. If 
A > 0, as we shall always assume, then U is bounded and 
corresponds to a multisoliton solution. 

Such a solution is a Stieltjes function of A for any value 
of x and t; its poles have positive residues and lie on the real 
negative axis of the A plane.5 

As a consequence, by truncating the associated contin­
ued fraction one obtains two sequences of approximations 
monotonically converging to the exact solution from below 
and from above. 

Such sequences are identical to the [(n - l)1n] and [n/ 
n] Pade approximants (P.A.) and we write 

[(n -l)1n]u(A)<U(A)<[n/n]U(A)' (2.14) 

where the equal sign in (2.14) holds for n>N. The behavior of 
the poles of both the exact and the approximate solution was 
investigated in Ref. 8; however, a rigorous proof of the exis­
tence of [(n - l)1n] P.A. and of their asymptonic behavior 
was missing. The [(n - 1)/n] P.A. is defined as the irreduci­
ble ratio, if it exists, of two polynomials P n _ 1 (A ) and Qn (A ) 
of degrees n - 1 and n, respectively, 

Pn_1(A) 
[(n -l)/n]U(A) =-Q-n(-A-)-

, 
I ' 
I ' -----1-1--

\i: 
54 J. Math. Phys., Vol. 24, No.1, January 1983 

(2.15) 

such that 

Qn(A )U(A) - Pn- 1 (A) = 0(,1, 2n). (2.16) 

The [(n - l)1n] P. A. exist according to the above definition 
if the linear system associated to the normalized coefficients 
of Qn (A) [namely Qn (0) = 1] has a unique solution, that is 

(2.17) 

Un _ 1 Un U2n - 2 

An equivalent condition is the linear independence of the 
vectors 

ifJ,AifJ,oo.,A n - lifJ , (2.18) 

whose Gram determinant is given precisely by the l.h.s. of 
(2.17). It is also useful to notice that the exact solution can be 
written as 

U= (ifJ,t/!), (2.19) 

where 

t/!=¢-AAt/! (2.20) 

and that the [(n - lin] P.A. are obtained by replacing the 
exact solution of the linear equation (2.20) with the approxi­
mate solution ¢ 

[(n - l)1n] U = (ifJ,¢) , (2.21) 

where 

¢ = ifJ - APAP¢ (2.22) 

and P is a projector into the n-dimensional subspace W n 

spanned by the vectors (2.18). The proof is immediate if one 
observes that ( ifJ,(1 + APAP)-lifJ ) is a rational function inA 
of the right order and that ( ifJ,(PAP)k ifJ ) = ( ifJ,A k ifJ ) for 
k = 0,1,00', 2n - 1 imply the agreement of the Taylor series 
of ( ifJ,t/!) and ( ifJ,¢) up to order 2n - 1 inA. Detailed proofs 
of the above properties and further information about P. A. 
can be found in Ref. 9. 

3. EXISTENCE OF THE [(n - 1}/n] P. A. 

Following the definitions of the previous sections we 
can state the basic existence result. 

Theorem 1: The [(n - l)/n] P. A. to the N-soliton solu­
tion exists and is unique for n <N provided that the 
{k1,oo.,kN 1 are all distinct. 

Proof The result follows if we can prove that the vectors 

FIG. I. 
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(2.19) are linearly independent for n<.N. Letting 

tP(kl=Ak-ltP. k=I •...• n. (3.1) 

a sufficient condition for these vectors to be linearly indepen­
dent is that the determinant 

tP \11 tP ~I 

D = n (3.2) 

tP \11 tP (II n-I 

tP \n - ml tP (n - ml n-I 
tP \n - m + II tP (n - m + II n -I 

0 

0 

n~ml (y) = 
tP \n - m + 21 tP (n - m + 21 i. tPj tP/lI 

n -I 
j~ I Y + kj 

does not vanish. 
We use an inductive procedure. It is evident that 

DI = tP \11 = tPl never vanishes (for any finite values of x and 
t). Assuming that Dn _ I #0 for 1 <.n<.Nwe shall prove that 
Dn#O. 

Let us consider the functions n ~ml (y) defined by 

N tPj tP/m 
- II 

tP \nl tP (nl I 

From (3.1) we have 

tP (kl = AtP (k-II 

n-I 

and taking (2.12) into account we can write 

N J. tP (k - II 

tP Ikl/tP, = I 'l'j j 
j~1 k,+kj 

It is immediate to check that 

n~ll(y)=Dn_1 

and 

j~1 y+kj 

(3.4) 

(3.5) 

(3.6) 

n ~nl(kn) = Dn1tPn . (3.7) 

In fact. accounting for (3.5) the last column of n ~I (kn ) is 
given by 1. tP ~l/tPn •...• tP ~nl/tPn' Since we have assumedDn - I 
# 0 and since tP n # 0 the task of proving that D n # 0 amounts 
to proving that n ~nl (kn )#0 knowing that n ~II#O. 

The functions n ~ml (y) are for m>2 rational functions 
of y; the degrees of the numerator and denominator polyno­
mials are not greater than N. The residues at the poles at 
- k l ,. ••• - kN are given by 

lim 11~ml (y)(y + kd = n~m-II (k,) tPi. 1= 1 •...• N. 
y_ -k, 

(3.8) 

Indeed. after taking the limit in the l.h.s. of (3.8) we have a 
determinant whose last column is precisely 0 •...• 0. tP i. 
tP, tP 121 ••••• tP, tP 1m - II. where the zero appears n - m + 1 
times. After factoring tP i we obtain a determinant. whose 
last column is O •...• O.I.tP 121/tP, •...• tP 1m - Il/tP,. which is identi­
cal to n ~m - II (k,). as one can see from (3.3) and (3.5). It is 
obvious that if n ~m - II (k,) = 0 then the residue of the pole at 
y = - k, vanishes. so that the degrees of the numerator and 
denominator polynomials of n ~ml ( y) are at most N - 1. 

We claim that n ~ml ( y) has at most m - 1 zeros on R +. 
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(3.3) 

I 
This result also can be proved by induction. In fact for m = 2 
all the residues are of equal sign since from (3.8) and (3.6) the 
residue aty = - k, for I = 1 •...• N is given bytP t Dn -I #0. 
As a consequence. on R+ n ~I (y) has at most one zero [none 
if n (21( 00 )Dn _ I > 0] (see Fig. 1). Assuming that n ~m - II (y) 
has at most m - 2 zeros on R+ we can then prove that 
11 ~ml (y) has at most m - 1 zeros on R +. A preliminary re­
mark is that n ~ml ( y) cannot vanish identically since all of its 
N residues cannot be zero. The residues for (3.8) are propor­
tional ton~m-II (k,) and at leastN - (m - 2»2 of them are 
different from zero since m<.n<.N. Let us consider the case 
in which no one of the ! k J is a zero of n ~m - II (y) and letjl of 
them k N ••••• k N _ j , + I fall between 0 and the first zero of 
n ~m - II (y).j2 of them fall between the first two zeros of 
n ~m - II (y). and finallyjm _ I of them fall after the last zero of 

n ~m - II (y). The poles corresponding to the same group of 
!k J (for example - kN • - kN _ I •.....• - kN _ j, + d have. 
due to (3.8). residues of equal sign and at least one zero has to 
lie between each pair. Therefore to j, poles there correspond 
at leastj, - 1 zeros. Two contiguous poles not belonging to 
the same group have opposite residues and an even number 
of zeros or none can fall between them. As a consequence a 
lower bound to the number N _ of zeros in R_ of n ~ml (y) is 
given by 

m-I 
N _> I (j, - 1) = N - m + 1 . (3.9) 

'~I 

We conclude that the number N + of zeros in R+ is given by 

N+ =N -N_<.m - 1. (3.10) 

If P of the ! k J are zeros of n ~m - II (y) the estimate (3.10) still 
holds since 11 ~ml (y) is then a rational fraction of order N - P 
and one has simply to replace Nby N - pin (3.9) and (3.10). 
In Fig. 2 we illustrate the behavior of n ~I (y) when p = O. 

C. Liverani and G. Turchetti 55 



                                                                                                                                    

We can now end our proof since we know that n ~)( y) 
will have at most n - 1 zeros on R+. Moreover, n ~n) (kl ) = 0 
fori = 1, ... ,n - 1 since the elements of the last column are 1, 
tP }2)ltPI'"'' tP}n - 1)ltPI' identical to the I th column up to the 
factor 1/ tP I' We can argue that n ~n)(kn ) # O. However due to 
(3.7) this implies that Dn #0 and our induction is complete. 

4. ASYMPTOTICS OF THE EXACT SOLUTION 

In order to investigate the asymptotic behavior of the 
multisoliton solution one cannot simply take the limit of 
U (x,! ) for t -+ 00, but must rather follow the signal by mov­
ing with a given speed v and look at this picture for very large 
times. The collection of these pictures for different values of 
v will give a complete description of the multisoliton asymp­
totic state which can be visualized as a superposition of indi­
vidual solitons. 

Let us first recall that the single soliton solution, given 
by (2.13) for N = 1, reads 

U(x,t) = tPi(x,t) 
1 + (A 12k l ) tP i(x,t) 

2k/A (4.1) 

where 8 is given by 

8 = pn [2k l /Aai] . (4.2) 

By differentiating one recovers the actual soliton solution of 
K.d.V. and identifies 8 with the phase factor. Indeed one 
obtains 

a 
v(x,t) = -- U(x,t) ax 

k~ 
= U' cosh2[ ~ kl(x - vlt) + 8j 

Let us move along with velocity v; namely, choose 
x = vt + S and consider the limit for t -+ 00 

V.,(s)= lim U(vt+S,t). 
1_ + co 

(4.3) 

(4.4) 

In the case of a single soliton U"" ( s ) follows from (4.1) and 
reads 

~i . 
~--:----:-
I I I 

I ' "- - - -----------

( 

I 
I , 

'n' I I 
I I 
I I 
I I 
I , 
I , 

I I 
I , 
, I 

FIG. 2. 
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(4.5) 

In order to investigate the N-soliton behavior we distinguish 
four different regions v > VI' VI + I < V < VI' V = VI' and V < VN' 
In fact, we first observe that 

tPl-tP/(Vt + s,t) = tPI( S,O) exp [ ! kl(v i - v)t ] (4.6) 

and that 

(4.7) 

The asymptoticbehaviorofU (vt + s,t )fort -+ + 00 is given 
by 

U",,(s) = lim U(vt+S,t) 
1_ + 00 

o 
2 

A 

2 

A 

2 

A 

I 

I kj 
j~1 

I-I 2k 1...1, I kj + I 

j~ 1 1 + exp[ kl S + 28d 
N 

I kj 
j~1 

where 81 is defined by 

(4.8) 

(4.9) 

From (4.8) we understand that the N-soliton solution is as­
ymptotically a superposition of N free solitons, whose 
phases, however, are modified, as one can see by comparing 
(4.9) with (4.2). In view of the study of the asymptotics and in 
order to set some basic notations, we carry out a proof of 
(4.8), which was first obtained by Zackarov. lO 

A. V>V1 

In this case tPj ----+ 0 for j = 1, ... ,N and from (2.12) and 
(2.13) we see that Uoc =0. 

B. V,+ 1 <V<V, 

We need to write the equations (2.19), (2.20), equivalent 
to (2.13), in a different form, since neither tP nor A has a limit 
for t ----+ + 00. Let us define the N X N matrices r,B and the 
vectors I, 'TJ according to 

1 
B··= , 

'J k
j 
+ k

j (4.10) 
iJ = 1, ... ,N 
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and 

e j = 1, i = 1, ... ,N, 1] = Frf;. (4.11) 

After noticing that A = rBr and that rP = re one can re­
place (2.19) by 

U = (e,1]) (4.12) 

and (2.20) by 

(4.13) 

Since the rPj have different behaviors according to j<) or j > I 
we introduce the diagonal matrices r + and r _ according to 

(4.14) 

So that r = r + r _ -I and Eq. (4.13) can be written 

r2+ e=(r2_ +Ar2+ B)1]. (4.15) 

Denoting that ill the projector defined by 

o 

so that r - 2 = r ~ 2 r 2_ + r ~. Since the asymptotic limit 
of r + and r _ is the same as is the previous case, 1], which 
satisfies the equation 

r2+ e= [r2_ +r2+ r~ +Ar2+ B] 1] (4.22) 

has a limit of 1] 00 for t -+ + 00. It is easy to verify that 

(1 - iltl1] 00 = 0; ill e = ild r ~ + AB ] ill 1] 00 . 

(4.23) 

As a consequence, letting C - 1(1) be a matrix such that 

ill C-I(l)ildr~ +AB)il, = ill , (4.24) 

one obtains 

(4.25) 

Using the results of the Appendix one finds that (4.25) is in 
agreement with (4.8). 
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o 

iJ<1 
otherwise 

(4.16) 

We observe that r + -+ II" r _ -+ (1 - Ill) for t -+ + 00. It 
is easy to check that the limit 1] 00 of 1] for t -+ + 00 exists 
since the limits of II, 1] and (1 - Il,)1] both exist. Taking the 
limit of (4.15) for t - + 00, we obtain 

(4.17) 

which imples 

(4.18) 

Letting B -1(1) be a matrix whose first principal minor of 
order I is the inverse of the first principal minor of order I of 
B, namely, 

(4.19) 

one can express the solution of the second equation in (4.18) 
and finally obtain 

Uoo = (e,(I-Iltl1]oo) + (e,IlI 1]00) 

= (lIA )(ille,B -1(/) ile e) (4.20) 

By using the results of Appendix A the last scalar product 
can be explicity evaluated in agreement with (4.8). 

C.V=V, 

In this case rP, is independent of t and we introduce the diag­
onal matrices r + according to (4.14), r _ and ro according 
to 

(4.21) 

o 

D. v<vN • 

In this case all the rPj diverge for t -+ + 00 so that r -2 -+ O. 
As a consequence, Eq. (4.13) defines the limit 1] 00 

e = AB1] 00 (4.26) 
and U 00 is given by 

Uoo = ~ (e,B-le) , 

still in agreement with (4.8). 

5. PRELIMINARY RESULTS FOR THE P. A. 
ASYMPTOTICS 

(4.27) 

In order to investigate the asymptotic behavior of 
[(n - l)1n J u for t -+ + 00 we replace (2.21) and (2.22) by 

[In - l)1nJu = (e,fj) , (5.1) 
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where 17 = r~ satisfies the equation 

e = (F-2 +ATBT+)17. 

The matrix T is defined by 

T=r-1pr 

and enjoys the following properties: 

T2 = T, Te=e. 

(5.2) 

(5.3) 

(5.4) 

As we did previously for the exact solution we evaluate the 
P.A. for x = vt + S and we consider the behavior for fixed S 
and large t. 

Theorem 2: The vector 17 satisfies T + 17 = 17 and is uni­
formly bounded for any finite t. 

Proof From (5.2) and (5.4) we obtain 

e = (Tr -2 +ATBT+) 17 = (F-2 +ATBT+)T+17, 
(5.5) 

and subtracting from (5.2) 

(5.6) 

Sincer -2 + ATBT + is, for any finite t, positive definite and 
therefore invertible, (5.6) implies that T+17 = 17. 

In order to prove the other property we remark that for 
any finite t, using the Schwartz inequality, (5.2) and 
T +17 = 17 we have 

1I17lIllell> 1 (e,17) 1 = (17,(F -2 + AB)17) 

>A/Lo[B ]111711 2 , (5.7) 

where /Lo[ . ] denotes the smallest eigenvalue of a symmetric 
matrix and the inequality /Lo[r -2 + AB ]>A/Lo[B] follows 
from the Rayleigh-Ritz principle. As a consequence 

Ile1l1lB-111 
A 

Q.E.D. (5.8) 

The next step towards the P. A. asymptotics is the asympto­, 

The reordering of the tP obviously can change by changing v. 

B. Changes of basis 

tic behavior of T that will be stated by Theorem 4. All the 
results ranging from Eq. (5.12) to (5.48) prepare the proof of 
this Theorem and could be skipped in a quick reading. 

A. Ordering of tP/ 

The asymptotic limit of [(n - l)1n 1 u can be performed 
if we know the behavior of P and T for large t. For this 
purpose the basis (2.19) on which P projects must be ortho­
normalized. The first step, however, is the ordering of the tP/ 
for v fixed and t large. This behavior is determined, accord­
ing to (4.6) by the arguments kj(vj - v). 

Letting 

we see that for t large enough 

{ 

tP· 
I(ki ) > I(kj )::::} lim .-l.. = 0 

t-----. + 00 tP; 
tP, 

I(ki ) = I(kj ) ::::} .-l.. = const 
tPi 

(5.9) 

(5.10) 

When the first condition in (5.10) occurs we shall also use the 
notation tP i > • tPj while the second will be denoted by tP i ~ tPj . 
Since the function (5.9) is monotonic increasing for y > (V)I/2 
then if k I > k2 > ... > k N > (v) I /2 the sequence of tPj is ordered 

tPl>·tP2>···· >·tPN· 
Whenk l>k2> ... >kl>(V)I/2> kl+1 > ... >kN,the 

first 1 of the tP are ordered; the remaining are not. 
However we can relabel the kj for j > 1 so that tPj are 

ordered according to tPl > ·tP2 > • ... > ·tPl > ·tPl + 1 
:> ·tPl +2:>· ... :> ·tPN· AftertPl + 1 the occurrence oftwotP 
with the same behavior is not excluded. However, there can 
be at most two tP with the same behavior since there are only 
two points in the interval ]O,(V)1/2[ at which/( y) can assume 
the same value. Therefore, after reordering the tP one must 
have tPj > • tPj+ 2 forj> I. Finally if(v)1/2 > kNall the k must 
relabeled if we wish to order the tP. To conclude, we write 

(5.11) 

Let us define an array n XN formed with the compon,ents ofthe vectors tP (I) for i = 1, ... ,n, and denote it by X 

X= (5.12) 

Let us denote by X (P), for 1 < p<n, the matrix n X N formed by vectors tP (i. p) i = 1 , ... ,n, obtained by linear combinations of 
the original vectors tP (I) i = 1, ... ,n, such thatX\j') = ~Ij for i = 1, ... ,p,j = l, ... ,p. In extended form we write 
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ifJ (I,p) 
p+1 ifJ i);P) 

1 (p) 

ifJ (p,p) 
p+1 ifJ IJ' p) 

X(P)= 
ifJ (/+ l,p) ifJ1+ I,P) ifJ(P+ I,p) ifJ IJ + I,p) (5.13) p+1 

ifJ \n, p) ifJ ~n. p) ifJ (n,p) 
p+1 

The recursion algorithm fromX( p - I) toX( p) explicitly reads 

p-I 
w(p) = ifJ(p,P-I)- L ifJ (i,p-I) ifJ\p,P-I), 

;=1 

ifJ (p,p) = w( p) / w~P) , 

ifJIi'P)=ifJ(i'P-I)-ifJ(P'P}ifJ~,p-I), i= I, ... ,p-I, 

ifJIi.P)=ifJ(i,P-I), i>p+ 1. 
(5.14) 

For convenience we shall also denote X by X (O) and ifJ (i) 

by ifJ (i.O). Let D (p) (1, ... ,p;)w",) p) be the determinant ofthe 
minor of order p of X ( P) formed by the first p rows and the 
columns)I""')p and let D (I, ... ,p;jl""') p) be the corre­
sponding determinant for X, that is, 

ifJ (1) 
J, 

ifJ (I) 
J p 

ifJ (p) 
J, 

ifJ(P) 
J p 

(5.15) 

SinceXiP) is obtained fromX(P - I)by linear combinations of 
its rows and by dividing the pth row by w~P) it is evident by 
recursion thatD(p) (1, ... , p;)w",)p) will be equal toD (I, ... ,p; 
jl""')p) divided by IIf= I w}iI. The last product is different 
from zero. Indeed, by comparing (3.2) and (5.15), Theorem 1 
states thatD (1, ... , p; I, ... ,p)#O, while from the definitions of 
X(p) and D (p) it follows that D (pi (I, ... ,p; I, ... ,p) = I so that 

p 

II w}'1=D(I, ... ,p; I, ... ,p)#O. (5.16) 
i= I 

Therefore we can write 

(pi .. D(I,,,,,p;)I""')p) (5.17) D (l, ... ,P;JI, ... ,j p) = ----'----...!....-
D (I, ... ,p; I, ... ,p) 

and notice that the following relation holds: 

ifJJPoP) =D(PI(I, ... ,p; I, ... ,p - 1,)) 

= D(I, ... ,p; I, ... ,p - IJ) , ) = 1, ... , N. 
D(I, ... ,p; I, ... ,p - I,p) 

(5, IS) 

The basic strategy to obtain an asymptotic estimate of ifJ ~i. pi 
for i = I, ... ,N is the following. First we establish a recursion 
relation relating the D of order p to the D of order P - I. 
Then we can estimate the ratios of D, appearing in the r.h.s. 
of(5.IS) in terms of the ifJj only, for t large, and obtain the 
required behavior of ifJ jP'P}. Through the third of the relations 
(5.14) we then obtain the estimate on the ifJ (i,p) for 
i = 1, ... , P - 1. A Gram-Schmidt orthogonalization will 
change the final basis given by ifJ Ii.nl, i = I, ... ,n, to a new basis 
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ifJ ~.P) 

Tlil, i = I, ... ,n, for which the asymptotic estimates can be giv­
en. Finally the asymptotic structure of P and T are deter­
mined. For the next developments we need to define the de­
terminant of order p K (rl, ... ,rp _ I ;)I""')p) according to 

kr, + kj, 

(5.19) 

Lemma i:ThedeterminantsDoforderspandp - 1 are 
related by 

= ifJj , .,. ifJjp L ifJr,'" ifJrp - , 
!rl.···.,.p_ 117 

(5.20) 

where P\, ... .rp _ I I f is an ordered set of p - 1 natural 
numbers, all distinct, chosen among I,2, ... ,N and the sum 
runs over all possible such sets. 

proof We first observe that from (2.12) and (3.1) 

ifJ?= i ifJjifJr ifJ~-l)· (5.21) 
r= I kj + kr 

From the definition of determinant one can write 

D (I, ... ,p;)I, ... ,j p) 
N N 

= L ... L ifJr, ifJ ~:) ifJr2 ifJ ~I ... ifJrp_, ifJ ~:_~ I) 

" = 1 rp = 1 

(5.22) 

where !SI,''',sP l{ is a permutation ofl, ... ,pandPis its parity. 
Accounting for -I.. ifJ· ... -I.. = -I.. ifJ ... -I.. and for (5.19) '+' )s, }S2 'f'Jsp 'f'll 12 'f'}p 

we have 

D (I, ... ,p;jl, ... ,jpl 
N N 

= "'... '" -I. -1.(1) -I. -1.(21 ... A. -I.ip-I) 
~ ~ 'PT. '1'" 'f/r2 'f'''2 'f'rp __ 1 'f' 'p __ I 

'. = 1 Tp_ 1= 1 

X ifJj , ifJj2 ... ifJjp K(rl, .. ·,rp_ I ;jl, ... jp)· 
(5.23) 
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We notice that the terms of the sum in which two or more of and 
the integers rl, ... ,rp _ I are equal, vanish since in this case the 
determinant K has two equal rows. Therefore we can write a 
sum over the distinct combinations of ordered p - 1 integers 
[rl, ... ,rp _ I J ~ out of 1, ... ,N and a sum over all possible per­
mutations [rl,· .. ,rp_ I Irl,···,rp_1 J ofrl,···,rp_ I' LettingPbe 
the parity of this permutation we consider the identity 
K(rl,···,rp_ 1 ;jl,···,jp) = (- l( K(rl,···.,rp_1 ;jl1 ... jp) so 
that we can write 

D (1, ... , p;jl1 ... ,jp) = (h, ... <Pj" 

x I K (rl, .. ·,rp - I ;jl,···,jp) . 
Ir, •. ,.,.p. II'~ 

x 

X A. (I) A. (2) ••• A. I p - I) 
¥' r! 'P r:-. r.p rp I 

= <Pj, ... <Pj, I <Pr, ... <Prp , 
I rl .... ,rp 1!;'V 

(5.24) 

where we used the identity 

<Pr ... <Pr = <Pr ... <P'f . Q.E.D. (5.25) 
L~mmaP/ For the det~r~inants D the following esti­

mates hold for t large enough: 

(5.26) 

where Mp and mp converge to the same limit for t --+ + co. 

More precisely one can write 

(5.27) 

where Cp is a constant and cp goes to zero with t --+ + co as 
<P~/<P~-I if<pp_1 >*<pp;asa<p~_I/<p~_2 +f3<P~+I/ 
<P ~_I if <PP-I -<pp. In addition one has m l = MI = 1, 
CI =0. 

Proof We use an inductive argument. The result is ob­
vious forp = 1 sinceD (l,j) = <pj. Assuming that (5.26) holds 
for p - 1 we use the result of Lemma 1, separating in the sum 
the leading term from the remainder. If <P p _ I > * <P p there is 
just one leading term which we denote by A UI, ... ,jp), while 
the remainder is B UI, ... ,jp)' namely 

D(I,···,p;jl,···,jp) = <Pj, ... <Pj, 

X [A UI,···,jp) + B UI,···,jp)] , 

(5.28) 
where 

A UI, ... ,jp) = <PI ... <Pp- ID (1, ... ,p - 1; 1, ... ,p - 1) 

XK(l, ... ,p - l;jl, ... ,jp) (5.29) 
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B UI,···,jp) = I <Pr, ... <Prp , 
Ir, ... .rp _ ,1;V7"II, ... ,p- II 

xD (1, ... , p - 1; rl,···,rp _ I ) 

XK (rl,···,rP_1 ;jl,···,jp)· (5.30) 

As a consequence, using (5.26) for p - 1, we have 

IB UI,···,jp)1 " 
-----=--<; M p _ I L 
IA UI,···,jp)1 II', .. .rp _ 11'~7"I1, .. ,p-II 

x<p~, ... <p~p , IK(rl,···,rp_l;jl,···,jp)1 

<p~ "'<P~-I IK(I, ... ,p-l;jl, ... ,jp)i 

(
p - 1) <P ~ 

<;Mp_ 1 N XP<P~_I=cp, 

(5.31) 

where by Xp we denote the largest of the ratios of K after 
noticing that the denominator is nonzero (see Appendix B). 
We conclude that (5.26) holds where 

IK(I, ... ,p - l;jl,···,jp)1 
C = . 

p IK(I, ... ,p - 1; 1,···,p)1 
(5.32) 

If <Pp-I -<Pp we have two leading terms in the r.h.s. of(5.20) 
namely, <PI'" <Pp-2 <Pp-I and <PI ... <PP-2 <pp. As a conse­
quence, we have to go one step further and use (5.20) twice in 
order to write D (1, ... , p;jl, ... ,jp) as a sum of 
D (1, ... ,p - 2;r1"",rp_ 2)' Of course this case can occur only 
for p~3. Ifp = 2 then the factors of the equivalent leading 
terms are constants and one does not need to go one step 
further. Let us denote by A UI, ... ,jp) the leading term and by 
BIUI, ... ,jp)' B2UI, ... ,jp) two remainders according to 

D (1, ... , p;jl,···,jp) = <Pj, ••. <pjp 

X [A UI, ... ,jpl + BIUI,···,jp) + B2UI,···,jp)] , 
(5.33) 

where 

A Uw··,jp) = <P ~ ... <P ~ - 2 <P ~ - I <PI ••• <pp - 2 

XD(I, ... ,p-2; 1, ... ,p-2) 

XLi (1, ... ,p - 2;jl,···,jp) 
(5.34) 

and 

BIUI,···,jp)=<pi "'<P~-I <P~-I I 
Ir, •...• rp _21;V 7"i1, ... ,p- 21 

X<Pr, '''<Prp_, D(I, ... ,p-2;rl ,· .. rp_ 2 ) 

xLi (rw",rp _ 2 ;jl,..jp) (5.35) 

and 

B 2UI,. .. ,jp) = I <p~, ... <P L, 
[rl'" ;rp_llf 

7"1 \, ... ,p - 2.p-1j 
#11 ..... p-2.pl 

X I <Ps, "'<PS
p 

,D(I, ... ,p-2;sl, ... ,sp_21 
! Sl.···. Sp _ 2 !;V 

xK (SI1''''SP _ 2 ;rw",rp _ I )K (rw",rp - I ;jl,· .. ,jp) . 
(5.36) 
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The constants.1 are defined by 

.1 ("I, ... ,rp-2;jl, ... ,jp) = K(rl , .. ·,rp_2; I, ... ,p - 2,p - 1) 
XK(I, ... ,p - 2,p - I;jl, ... ,jp) 

+ ~; K(rl , ... ,rp_2;1, ... ,p - 2,p) 
f/lp-I 

XK(I, ... ,p - 2,p;jl, ... ,jp), 
(5.37) 

where the ratio f/lp/f/lp-I is independent oft since f/lP-I -f/lp 
and the coefficient of the leading term.1 (1, ... , p - 2;jl, ... jp) 
is different from zero as shown in Appendix B. Using (5.26) 
for p - 2 we have 

(5.38) 

where X 11
) is the largest of the ratios of.1 occuring in the sum. 

For the ratio IE2/ A 1 we obtain 

I 
Irl.···.,.p_tlf 

¥\l ..... p-2.p-11 

¥P.···.p-2.pl 

x 

(5.39) 

where X 12) is the largest of the ratios of K and.1 occurring in 
the sum. Finally, (5.27) is recovered with Ep = E11

) + ~:) and 

c = l..:i (I, ... ,p - 2;jl, .. ·,jp)1 

p l..:i (I, ... ,p - 2; I, ... ,p)1 . 
(5.40) 

We can now quote the basic result stating the following 
theorem. 

Theorem 3: The asymptotic behavior of the vectors 
f/l ii.pl whose components define the matrix Xip) is given by 

(5.41) 
Proof For i = p, using (5.18) and the results of Lemma 

2, the estimate (5.41) is satisfied. For i <p we use the third 
equation of (5.14) and an inductive argument. Indeed, for 
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p = 1 the relation (5.41) is trivially verified since f/l til 
= f/l/f/ll by construction. Assuming the relation valid for 

p - 1 we have 

f/l Y'P) = f/l Y'P - I) - f/l )P'P) f/l ~'P - II 

= O( f/l/f/lJ + O( f/l/f/lp) O( f/lp/f/li) 
= O( f/l/f/li)' i<.p - 1, j>p. (5.42) 

C. The orthogonal basis 

The orthogonalization procedure is applied to the final 
set of vectors f/l (i,n) for which we can write when t is large, see 
(5.13) and (5.41), 

{
O( f/l/f/l) j>n 

.J..{i.nl_ ] I • 

If' j - • l<.n. 
t>ij }<.n 

(5.43) 

Letting rli) be the orthogonal vectors, we can obtain them by 
using the Gram-Schmidt recursive procedure 

i-I 
rlil = f/l (i.n) - I ?/) < ?I),f/l (i,n) i = 1, ... ,n , 

1= I 

where ?I) are the normalized vectors 

?I) = rll)/lIrll)lI . 

(5.44) 

(5.45) 

The asymptotic behavior of r(i) is easily computed from (5.43) 
and one has to distinguish four different regions r I ¢ ! + ,N, ¢,i jd, I 

r,tJ = 1 j= 1, II 
(5.46) ] 0 i <j<.n, III 

O(f/l/f/li) n<j<.N, IV 

In addition the norm of rl/) has the following estimate: 

IIrlI)I12 = 1 + O( f/l~+ I/f/li). (5.47) 

We are in a position now to specify the asymptotic structure 
of the matrix T defined by (5.3). We can also write 

n 

T= I T(p), 
p=1 

where 

Til') = .J..- I .f:p) .f:p).J... Ilrl P)II- 2 
lJ 'f' , I J 'PJ . (5.48) 

Theorem 4: The matrix T has the following asymptotic 
structure: 

(5.49) 

if f/ln > * f/ln + 1> that is, f/ln + I/f/ln - 0 for t - + 00; 

T= lln_1 + (1 - lln_1 )Zlln+ I + ~ (5.50) 

if f/ln -f/ln + I' that is, f/ln/f/ln + I is independent of t. The ma­
trix Z is bounded while any ~ ij is exponentially small for 
!- + 00. 

Proof In order to estimate the matrix elements TIl) we 
have to distinguish 16 possibilities according to the region to 
which the couples of indices (p,i), (p,}) belong [see (5.46)]. 
Then it is not hard to check that 
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[I-I] i< p, j< p TIP)=OCP~+l ) 
Ii rP: rP; 

[I-II] i< p, j=p Tlpl = 0 (rP ~ + 1 ) 
lJ ¢>7 

[I-III] i < p, p<j<n TV1 = 0 

[I-IV] i< p, n<)<N TIPI = 0 ( rP ~ + 1 rP J) 
ij rP: rP; 

[II-I] i=p, j< p TIP) = 0 (rP~+ 1) 
'i rP: 

[II-II] i=p, j=p Tipi = 1 + 0 (rP ~ + 1 ) 
ij rP~ 

[II-III] i=p, p<j<n TVI = 0 

[II-IV] i=p, n<j<N Tip) = O( rPJ) 
Ii rP: 

[III-I], [1II,lIl 
p <i<n, 1<)<N TVI = 0 

[III,III l, [III,IV 1 

[IV-I] n <i<N, j< p Tip) = 0 (rP ~ + 1) 
ij rP: 

[IV-II] n<i<N, j= p TV)=O(I) 
[IV-III] n <i<N, p<j<n TV) = 0 

[IV-IV] n <i<N, n < j<N Tlp)= O( rPJ) 
Ii rP: (5.51) 

We remark that in the above expressions if rP n > • rP n + 1 then all the terms are exponentially small for t large except for [II,II] 
and [IV, II]. When rPn -rPn + 1 we have Tt) = 0 (1) in the regions [11,1], [11,11], and [II,IV], [IV,IV] only forj = n + 1. 

6. ASYMPTOTIC LIMIT OF THE [(n - 1}/n] P.A. 

The asymptotic limit for t -+ 00 of the [In - I)ln] P.A. to the N-soliton solution for n<N is given by 

lim [(n-l)1nl u = 
,~ 00 

where 01 is defined by (4.9). One can easily recognize that 
asymptotically the [(n - 1)1 n luis given by an ensemble of n 
free solitons whose parameters are k 1 > k2 > ... > k n , the 
same as the n leading solitons of the exact solution. We shall 
give a distinct proof of the limit in each of the above regions. 

A. V> V, 

In this case it is sufficient to recall the inequality 

O<[(n -l)Inl u<U (6.2) 

valid for any finite t and to use (4.8) to show that the P.A. 
converges to zero when t -+ + 00 

B. V,+ 1 <v<v,. I<n 

In this case both rPn > • rPn + 1 and rPn -¢n + 1 are allowed. 
However, from (5.49) and (5.50) the following relations are 
obtained: 
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iln_ 1 T=iln_ 1 +iln_11f; 

T(I-iln+l)= 1f(I-iln+1). 

(6.1) 

(6.3) 

We define r + and r _ according to (4.14) and observe that 

r 2+ = ill + (1 - ill) If +; r 2_ = (1 - ilIl + il{1f _, 
(6.4) 

where II <g + II and II <g _II are exponentially small for large t. 
The basic equation (5.2) then reads 

r 2+ e = [r 2_ + r 2+ ). TB ] ~. (6.5) 

Acting with (I - ill) on (6.5) we obtain the equation 

(I - ill)~ = (1 - ilIlIf + [e - )'TB~l , (6.6) 

which shows that 11(1 - ill) ~II is exponentially small for 
large t since both T and ~ are uniformly bounded according 
to Theorems 2 and 4. 
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Acting with ilion Eq. (6.5) and accounting for (6.3), 
(6.6), and ill Un _ I = ill' we have 

ill e = ARI Bill r, + p, (6.7) 

where p is a remainder defined by 

p=AilI B(I-ill )r,+ill('1f _ +A'1fB)r" (6.8) 

and its norm II pil is exponentially small with t. As a conse­
quence, using the same symbols as in Sec. 4, we finally obtain 

[(n - l)lnJ u = ~ (ille,B -I(/)ille) + r, (6.9) 
A 

where r is exponentially small with t. 

C. V= VI' /<n 
We introduce the matrices r _ and ro according to 

(4.21), that is, 

r 2_ = (I - ill) + ill _ I '1f _; 

r~ = (ill - U l _ d rP l-2( 5,0). (6.10) 

If / < n then both rPn > * rPn + I and rPn -rPn + I can occur 
while for / = n the second is excluded. As a consequence in 
both cases we have 

(6.11) 

Letting r + still be defined by (6.4) the basic equation (5.2) 
now reads 

r2+ e = [r2_ + r2+ r~ + r2+ ATB Jr,. (6.12) 

Applying ill and 1 - ill respectively to the last equation we 
finally have 

(I - ill) r, = (I - ill) '1f + [ - A TBr, + e J (6.13) 

and 

ille = il/(A + r~)lll r, + p, 

wherep is given by (6.S). The P.A. then reads 

[(n - I)/n J u = ( il/e,C -I(l)il/e) + r, 

(6.14) 

(6.15) 

where C (/) is defined by (4.24) and is in agreement with (6.1) 

D. v<vn 

In this case rPn > * rPn + I and from (5.49) we obtain 

iln T=iln + iln '1f; T(I-iln) = '1f(I-iln)· (6.16) 

Using the second equation of(6.16) and Theorem 2 we have 

(1 - iln) r, = (1 - Un) T+r, = (1 - iln)'1f+r,· (6.17) 

We observe that r, still satisfies Eq. (6.5) where for v/+ I 

< V < v/ with />n the matrices r + and r _ are given by (6.4) 
while for v = v/ with / > n, r + does not change and r _ is 
given by 

r 2_ = (1 - ill_ I ) + (ill - il/_ d rP ;( 5,0) + il/_ I '1f _ . 
(6.1S) 

By applying Un to Eq. (6.5) one obtains in each case 

ilne =Ailn Biln f] +p, (6.19) 

wherep is a remainder given by (6.S) where / is replaced by n. 
From (6.19) we finally obtain 
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[(n - 1)/nJ u = ~(ilne,B -I(n) ilne) + r, 
A 
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where r is exponentially small with t. 

7. CONCLUSIONS 

The asymptotic behavior of the [n - lin] P.A. to the 
multisoliton solution for the potential K.d.V. does not seem 
to be an isolated accident. In fact the structure of exact 
multisoliton solutions and of the related perturbation series 
for other equations (modified K.d. V., cubic Schr6dinger) 
would suggest that most of the arguments used here can be 
extended. For the actual solution ofK.d.V. corresponding 
asymptotic statements could be obtained that are physically 
quite reasonable. In fact the summation method we propose 
extracts from a finite number of terms a nonperturbative 
feature of the solution, as the solitons are. 

An important and yet unsolved question concerns the 
persistence of the described asymptotic behavior also in 
presence of a background. We hope an answer will be given 
in spite of the nontrivial mathematical difficulties. 

APPENDIX A 

Let B, K, E, be / X / matrices defined by 

I 
Bij = k k; Kij = k i Dij; Eij = 1 iJ = 1, ... ,/ 

i + j 

(AI) 

and e be the vector ofR/ defined by ei = 1 for i = 1, ... ,1. We 
can prove that the following relation is satisfied: 

I 

(e,B -Ie) = Tr(B -IE) = 2 I kj • 

Indeed if we observe that 

BK+KB=E, 

j~ I 

(A2) 

(A3) 

then Tr(B -IE) = 2 Tr(K) follows. Let C be the / X / matrix 
defined by 

(A4) 

where rP /- 2 ( 5,0) = al- 2 exp(kl 5) in agreement with (2.11). 
The following relation holds 

(e,C-le) =Tr(C-IE) 

2 /-1 2k,/A 
= - I k + -----.:----

A j~ I J 1 + exp[ k/ 5 + 2Dt] 

where 01 is defined by (4.9). In fact we observe that 

KC + CK = AE + <P , 

where 

(/Jij = 2k[ rP [- 2 ( 5,0)Di/ OJ! . 

As a consequence we have 

A Tr(C-IE) = 2Tr(K) - Tr(C- I (/J) , 

(AS) 

(A6) 

(A7) 

= 2 I k j - 2k/ rP /-2( 5,0)(C -1)1/ 

j~ I 

(AS) 

so that accounting for 

(C- I ) _ ..1/_ 1 

1/- A..1/ +rP/-2(5,0)..1[_1 ' 
(A9) 
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fly) 

K"_l 

FIG. 3. 

where L1j is defined by (4.9), after simple algebra (AS) is ob­
tained. 

APPENDIX B 

We show that the following relations are satisfied: 

K(I, ... ,p - l;jl, ... ,jp)=l-O; K(I, ... ,p - 2,p;jl, ... jp)=l-0. 
(Bl) 

It suffices to consider the function 

A(y)= 

kp~2 +kj, 

1 

y+kj , 

kP~2 +kjp 

1 

y + kjp 
(B2) 

and to remark that it is a rational fraction [(p - 2)1 p)]. In 
fact by expanding the determinant on the last row one would 
find a rational fraction [(p - 1)1 p]; however the numerator 
is indeed of order p - 2 since one verifies that 

lim yA (y) = O. 

The p - 2 zeros are at k I ,k2, ... ,k p ~ 2 and one has 

A (kp~ I) = K (1, ... ,p - l;jl,· .. ,jp); 
A (kp) = K(I, ... ,p - 2,p;jl,· .. ,jp)· 
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(B3) 

(B4) 

Then (B 1) follows provided that A (y) is not identically zero; 
this occurrence can be excluded since the residue of A (y) at 
y= -kjp isgivenbyK(I, ... ,p-2;jl, ... ,jp~l)andthein­
duction argument applies since K (l,jl) = 1. 

Next we observe that if ¢p ~ I ~¢p then, see also Fig. 3, 
it is evident that kl, ... ,kp ~ 2 are external to the interval 
[kp ~ I' kp ]; as a consequence A (y) must have the same sign 
throughout the interval itself and one has 

sign[K(I, ... ,p - l;jl, ... ,jp)] 

= sign [ K(I, ... ,p - 2,p; jl, ... ,jp)]' 

We then consider the function il (y) defined by 

illy) = 

(BS) 

which is rational of type [(p - 2)/(p - 2)] and vanishes for 
k l,k2, .. ·,kp ~ 2' Using the previous arguments one concludes 
that 

K(l, ... ,p - 2; 1, ... ,p - 2,p - 1)#0; 

K(I, ... ,p - 2; 1, ... ,p - 2,p)#O (B6) 

and if ¢p ~ I ~¢p, namely, k l ,k2 , ... ,kp ~ 2 do not belong to the 
interval [kp~ I ,kp], 

sign[K(I, ... ,p - 2; 1, ... ,p - 2,p - 1)] 

= sign[K(I, ... ,p - 2; 1, ... ,p - 2,p)]. (B7) 
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We develop here the calculus of twisted tensors and in particular twisted differential forms, 
treating them as tensors with complementary orientations. These geometrical objects give us the 
proper language for electromagnetic theory in a 3-space plus time representation. The parity 
properties of the fields are simplified and many graphical illustrations are given. 

PACS numbers: 03.50.De, 02.40. + m, 04.90. + e 

The student's image of the electromagnetism teacher 
has him wildly waving his right hand at every B field and 
cross product in sight. Since classical electromagnetism is a 
parity-invariant theory, this handedness must all cancel out. 
One might think that modern geometric language, especially 
differential forms, would clear this up, but an inspection of 
the "egg-crate" pictures in Misner, Thorne, and Wheeler I 
shows this not to be the case. There charge density, for exam­
ple, is represented by a 3-form. A 3-form has a screw sense, 
and a right-hand rule is needed to choose one such screw 
sense to represent positive charge. Now the 4-vector formal­
ism is manifestly parity-invariant, but lacks the numerous 
advantages of a space/time splitting. Thus arises the ques­
tion: can one find a 3 + 1 representation that is naturally 
parity-invariant from start to finish? 

This question has a resolution in an old, nearly forgot­
ten class of geometric objects, ones whose transformation 
law includes the sign of the Jacobian of the transformation in 
addition to the usual tensorial terms. They were introduced 
by Weyl2 and developed by Schouten,3 who called them W 
tensors (for Weyl). Synge and Schild4 refer to them as orient­
ed tensors. DeRahm5 used differential forms of this type and 
called them odd differential forms. Sorkin6 uses these differ­
ential forms to discuss magnetic monopoles, and calls them 
axial forms. Steenrod7 constructs the bundles for these ten­
sors, as does Eells,S who along with Frankel9 calls them 
twisted tensors. I will use twisted as the most apt description 
of them. 

Twisted tensors are usually introduced abstractly. To a 
physicist they are sets of components with transformation 
laws which depend on the sign of the Jacobian of the trans­
formation. To a mathematician, they are cross sections of 
fiber bundles. In this paper we give a concrete development 
of twisted tensors, showing the twisted tensors as indepen­
dent geometric objects. They do not depend upon a choice of 
orientation, only their conventional representation does. Ex­
plicit rules for the operations of the exterior calculus for 
twisted forms will be given. Pullback in particular will be 
carefully discussed. Instead of using oriented maps, we will 
find it convenient for the applications to define it in terms of 
a transverse orientation for the subspace. The explicit treat­
ment of twisted tensors given here lends itself to simple but 
accurate graphical representations. In the last part of the 
paper these twisted forms are applied to classical electro-

magnetism. The pullback rule, for example, gives us a nice 
representation of the junction conditions. 

TWISTED TENSORS 

An orientation for a vector space is a choice of an or­
dered set of basis vectors to represent positive orientation. A 
subspace of a vector space can be oriented in two ways. One 
can orient it as a vector space itself. Alternatively, one can 
orient its complement in the entire vector space. One needs 
an orientation for the entire vector space to go back and forth 
between these two types of orientations, called inner and 
outer orientations by Schouten. An outer orientation is often 
called a transverse orientation. Tensors of all types have re­
presentations in the tangent space, 1,10 and the above proce­
dure can be used to generate from any oriented tensor a geo­
metric object with complementary orientation. These are the 
twisted tensors. 

A tangent vector is represented by an arrow. A twisted 
vector in three dimensions is represented by a line with a 
definite length and a sense of circulation around it. Figure 1 
shows vectors and twisted vectors and their law of addition. 
To appreciate that a twisted vector is an independent notion, 
consider the problem of finding a continuous nonzero vector 
field on the Moebius strip which is everywhere transverse to 
the edge. No such vector field exists, but a twisted vector 
field with these properties does. See Fig. 2. 

A I-form in three dimensions is represented by a pair of 
planes with a definite spacing and an outer orientation. A 

\ J 
/ 

FIG. 1. Vectors and twisted vectors. Their addition is shown by triples 
which sum to zero. 
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FIG. 2. A continuous twisted vector field on the Moebius strip. 

twisted I-form has instead an inner orientation. See Fig. 3. 
Given an orientation of the tangent space, one can map 

tensors into twisted tensors and vice versa. The basis of twist­
ed vectors generated by the usual right-hand orientation is 
shown in Fig. 4. I will indicate taking the complementary 
orientation by putting a tilde over the symbol: iJ is thus the 
twisted differential form associated with (J) by a specific ori­
entation. Let me denote any ordered set of vectors which 
represents the orientation of the object 7 by ! 71. If n is the 
unit volume form, then ! n I is an orientation of the entire 
tangent space, and the map tilde is given by 

{{a}, {an = {n}, (1) 

as we shall see. I will use a tilde over the symbol to indicate 
twisted forms in general. The most convenient representa­
tion for twisted forms is to pick an orientation! n I and to use 
2t, 'dY, and 2t as a basis. 

INTEGRATION OF TWISTED FORMS 

Ordinary differential forms can be integrated over re­
gions having an inner orientation. The most natural applica­
tion of this is to line integrals. For each little piece of the 
integrand one compares the orientation of the differential 
form with the orientation of the region to find the sign of its 
contribution to the integral. We have Stokes' Theorem 

i dm = f (J), 

r Jar 
(2) 

FIG. 3. A I-form, a twisted I-form, and their rule of addition, shown by 
triples which sum to zero. 
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~x 

FIG. 4. A right-handed basis for twisted vectors. 

where the orientation of the boundary is related to the orien­
tation of r by 

{n, {arn = {r}. (3) 

Here n is the outward pointing normal. Ordinary differential 
forms cannot be integrated over nonorientable regions. 

Twisted forms, on the other hand, can be integrated 
over regions which have an outer orientation. The most nat­
ural application here is to volume integrals. Let us consider 
first integration over a region with the same dimension as the 
space itself. Twisted n-forms already have a sign and so they 
may be integrated directly, even over nonorientable regions. 
To integrate a twisted (n-I )-form, we compare the orienta­
tion of the form with a vector giving the outer orientation of 
the region, and from this find the sign of the integrand. In the 
next section we will define the exterior derivative of twisted 
forms so that we have what I think should be called the 
divergence theorem, 

(4) 

The tilde here indicates that the regions have an outer orien­
tation. The boundary ar is given an outer orientation using 
the outward-pointing normal. This ensures that the contri­
bution of an internal boundary cancels, and that an integra­
tion region can be freely cut up into cells. We will soon define 
pullback so that the divergence theorem can be applied also 
to subspaces. 

OPERATIONS ON TWISTED FORMS 

All of the operations of the exterior calculus readily 
extend to twisted differential forms. The general rule is that 
the tilde factors through products, and that its square is uni­
ty. We want it to commute with the operations of exterior 
differentiation, 

diJ = 'J(;f, 
wedge product 
~ -
a 1\{3 = a 1\{3 = a 1\{3, 

and pullback. 
If we look at the monomial 

iJ = fIx 1) dt2 1\ dx3 1\ ... 1\ dxn 

(5) 

(6) 

(7) 
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'c t 
E 

FIG. 5. The wedge product ofa I-form Eand a twisted I-form Hisa twisted 
2-form. A regular 2-form would not behave properly under reflection in the 
plane P. 

and use the commutivity of d and tilde we find 

diJ= aj d'Xll\dx21\ ... l\dxn. (8) 
axl 

The divergence theorem will only be satisfied if we assign to 
iJ the orientation I xllliust compare with the corresponding 
Stokes' theorem). This forces the map tilde to have the form 

{{iJ},{w}} = {n}. (9) 

The orientation of the wedge product a 1\f3 is given by 

{al\f3} = {{a},{f3}}, (10) 

where the vectors in I a I should be in the kernel of 1f31 and 
vice versa. From Eq. (9) we find the relation 

-...J 

{{f3}, {al\f3}} = {a-}. (11) 

The wedge product of a I-form and a twisted I-form is a 
twisted 2-form. See Fig. 5. The wedge product of two twisted 
I-forms is an ordinary 2-form, as shown in Fig. 6. The con­
traction of a vector with a twisted I-form gives, not a signed 
number, but an oriented number (screw-sense). 

One operation not specified by the tilde-rule is pullback. 
While ordinary differential forms can be pulled back onto 
subspaces directly, twisted forms require an outer orienta­
tion of the subspace. If this outer orientation is given by I n I, 
then the orientation of the pullback ¢*(a) is given by 

{{n}, {¢*(a)}} = {a-}. (12) 

If we give the subspace the orientation I n I I satisfying 

{{n}, {n '}} = {n}, (13) 

FIG. 6. The wedge product of two twisted I-forms is an ordinary 2-form. A 
twisted 2-form would not behave properly under reflection in a horizontal 
plane. 

67 J. Math. Phys., Vol. 24, No.1, January 1983 

then pullback commutes with tilde. The pullback behavior 
of twisted forms will fit naturally into the junction condi­
tions of electromagnetism. 

To use the divergence theorem on subspaces, we need 
an outer orientation for the subspace i', and an outward 
normal vector n for the boundary ai'. The outer orientation 
of the boundary is then 

{aT} = {{r}, n}. (14) 

A metric is usually introduced into the exterior calculus 
by the Hodge star operator. This operator involves both the 
metric and a choice of orientation. We can define an unor­
iented version of the Hodge star by mapping forms to twisted 
forms, and vice versa. This can be handled by writing the 
new operator as, ., and using the tilde-rule to simplify pro­
ducts. Despite its appearance, • is independent of any choice 
of orientation. 

ELECTROMAGNETISM 

The manifestly parity invariant representation of elec­
tromagnetism comes from the work of van Dantzen II and 
Schouten,3 although their work is not in modern notation 
and sometimes hard to follow. The representation in parity 
invariant form uses the geometric objects shown in Table I 
and in Fig. 7. The co-orientations are all taken with respect 
to 3-space. Time enters here just as a parameter. These "egg­
crate" representations of2-forms are the same as those given 
in Schouten3 or Misner, Thorne, and Wheeler. I The devel­
opment of electromagnetism here follows Frankel9 except 
for the units. 

Maxwell's equations for the evolution of the electric 
and magnetic fields read 

aB = -dE, 
at 
aD - -
- =dH-41TJ, at 

with initial-value equations 

dB=D, 

di5 = 41Tp. 

(15) 

(16) 

(17) 

(18) 

We are using unrationalized units with c = 1 (thus avoiding 
the e.s.u./e.m.u. distinction). The operator d is exterior dif­
ferentiation in 3-space. The Lorentz force law is 

F = q(E - v·B ). (19) 

The geometric objects were chosen as follows. The cur­
rent is represented by a twisted 2-for 1, an "egg-crate" en-

TABLE I. Geometric objects for electromagnetism. 

E 
iJ 
B 
if 
j 

p 
t/J 
A 

I-form 
twisted 2-form 
2-form 
twisted I-form 
twisted 2-form 
twisted 3-form 
scalar 
I-form 

William L. Burke 67 



                                                                                                                                    

FIG. 7. The geometric objects representing electric and magnetic fields. The 
signs of the fields have been carefully chosen. The charge shown creates the 
D field shown, and that Dleads to the E shown, etc. 

closing unit current with an orientation given by the direc­
tion of current flow. Using an ordinary 2-form to represent 
current density would improperly describe the current flow 
by a screw sense. The charge density is represented by a 
twisted 3-form enclosing unit charge, with a sign for positive 
or negative charge. Again a twisted 3-form is used because 
an ordinary 3-form would describe charge with a screw 
sense. An ordinary 3-form would represent magnetic charge. 
Charge conservation follows by taking the exterior deriva­
tive ofEq. (16): 

ap = -dJ 
at ' (20) 

and using Eq. (18). It guarantees that the initial-value equa­
tions are preserved by the dynamical equations. 

With the above geometric structures for charges and 
currents, we see that 15 and ii must also be twisted. The 

E 

FIG. 8. The action of. in three dimensions. The I-form Eand the twisted 2-
form jj form a rectangular parallelopiped with sides satisfying a = be. 
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FIG. 9. The action of. in two dimensions. The I-form E and the twisted 1-
form jj form a square. 

parity properties are now nicely straightened out. The B field 
is a 2-form and does not change sign under inversion. The 15 
field is a twisted 2-form and does. Likewise, E is a I-form and 
does change sign under inversion, while ii does not. Note 
that we give the B field the correct parity by making it a 2-
form rather than a twisted I-form. 

No covariant differentiations are needed and thus far 
no metric has appeared. This is the usual advantage of using 
differential forms in electromagnetism. The metric must en­
ter, and it does in relating E to jj and B to ii. The usual 
formalism uses the Hodge star operator for this, but for our 
parity invariant formalism we will use •. The construction in 
vacuum is shown in Fig. 8. We have 

15 = i.E, 

ii = i.B. 

(21) 

(22) 

In Fig. 9 we show the construction in two space dimensions. 
This is the familiar square construction. It requires only a 
conformal structure, not a full metric. Indeed, conformal 
transformations are only a symmetry of electromagnetism in 
two and four dimensions. 

The junction conditions of electromagnetism are of two 
types. E and B are continuous across any surface. Their pull­
backs onto any surface from either side must be equal. 15 and 
ii, however, can have discontinuities if there are surface 

FIG. 10. A surface current K and a suitably discontinuous jj field. The 
addition ignores the 41T factor for clarity. 
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FIG. II. A surface charge X and a suitably discontinuous jj field. 

charges or currents. Surface charge can be represented by a 
twisted 2-form on the surface, with the orientation taken in 
the two dimensional surface. A surface current is represent­
ed by a twisted I-form on the surface. We pullback the fields 
on the two sides of a surface, orienting the surface with a 
vector pointing from the surface to the side where the field is 
defined. The field on the other side of the surface uses the 
opposite orientation. The junction condition is that the sum 
of the pullbacks of if from the two sides is 41T times the 
surface current, and the sum of the pullbacks of i5 is 41T times 
the surface charge. This natural relation between surface 
current and the if field is shown in Fig. 10; the relation be­
tween surface charge and the i5 field is shown in Fig. 11. We 
orient the surface with a vector n pointing from the surface to 
the side where the field is defined, and use the opposite orien­
tation to pullback the field on the other side of the surface. 
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Note how naturally these two types of junction condi­
tions fit into our formalism. We cannot naturally give a sign 
to the discontinuity of either E or B, nor do we need to. For i5 
and if the sign is forced on us by the behavior of twisted 
forms under pullback. It is amusing to note that magnetic 
charge does not fit naturally into this formalism. A surface 
current of magnetic charge has an outer orientation and can­
not be described by any geometric object intrinsic to the sur­
face. How is this difference between electric and magnetic 
charge reconciled with duality rotations? These are the 
transformations: 

E---+(cos ()IE + (sin ())*B, 

B---+ - (sin () I*E + (cos () lB. 

(23) 

(24) 

Note that the duality rotation must involve * and not •. It is 
not a parity invariant transformation. 
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As an introduction, the eigenvalue problem for a linear operator T having a discrete point 
spectrum and a complete set of eigenfunctions is studied. The bivariational principle for T and its 
adjoint operator Tt is derived, and the biorthogonal properties of their eigenfunctions are 
discussed. The main part of the paper is then concerned with the problem whether these features 
can be extended also to a general pair of adjoint operators, T and Tt , in which case the eigenvalue 
problem is replaced by the more general stability problem. The stability problem for a pair of 
adjoint operators-T and Tt -is first formulated in terms of nonorthogonal projectors-O and 
o t -which decompose these operators and satisfy the commutation relations TO = OT and 
Tt 0 t = 0 t Tt . In the case of a finite space, these skew-projectors may be explicitly expressed in 
product forms derived from the reduced Cayley-Hamilton equation for the operator T. It is 
shown that, if the stable subs paces defined by these projectors are properly classified by their 
Segre characteristics, one may explicitly derive the form of the projectors for the irreducible stable 
subspaces associated with the individual Jordan blocks of the so-called classical canonical forms 
of the matrix representations of T and Tt . It is further shown that, in such a case, the 
biorthonormality property of the generalized eigenfunctions is still valid, and that a bivariational 
principle may be derived. The extension of these results to infinite spaces is finally briefly 
discussed. 

PACS numbers: 03.65. - w 

1. INTRODUCTION 

A fundamental mathematical tool in quantum theory is 
represented by the linear operators T defined on a Hilbert 
space Sj = ! I I having the positive definite binary product 
(/Ig). Such an operator T has a domain D (T), and it has 
further an adjoint operator Tt with the domain D (Tt ) de­
fined through the relation 

(1.1) 
Considering the physical applications, however, one is par­
ticularly interested in such operators Fwhich have real ex­
pectation values (F)av = (/IF II): (III) for any state 
vector I within D (F). Using the well-known polarization 
identity,l it is easily shown that such operators are self-ad­
joint, Ft = F, which means that (/IFg) = (FIlg) and that 
D (Ft) = D (F). In the case of a purely discrete point spec­
trum, these operators have real eigenvalues and orthogonal 
eigenfunctions and, in many cases, the latter form a com­
plete set which may be used as a basis for the space Sj = ! I J 
in formal studies as well as in practical applications. These 
properties may also be generalized to the case when the spec­
trum of the operator F is partly or fully continuous. 

In addition, one also studies sometimes in physics nor­
mal operators A characterized by the relation AA t = A t A. 
They have complex eigenvalues and orthogonal eigenfunc­
tions, and they may be considered as combinations 
A = A + iB of two self-adjoint operators A andB having the 
property AB = BA. Of particular importance are, of course, 
the unitary operators U characterized by the relation 
uut = U t U = 1 having their eigenvalues in the unit circle 
in the complex plane. The spectra of the normal operators 
may be either discrete point spectra or partly or fully contin-

uous, and the main properties are still essentially the same. 
From the point of view of physics, it seems hence suffi­

cient to study the properties of the self-adjoint and the nor­
mal operators. However, for the mathematical treatment of 
many problems in the quantum theory of matter, one has 
during the last decades become interested also in the general 
linear operators Twhich are neither self-adjoint nor normal, 
in the partitioning technique2 for solving the eigenvalue 
problem with the aid of a complex parameter or in the com­
plex scaling method3 for studying resonance phenomena in 
scattering problems. 

The question is under what conditions one can genera­
lize the highly useful properties of the self-adjoint and nor­
mal operators-particularly the orthogonality and expan­
sion properties of the eigenfunctions-also to general linear 
operators T. The general treatment of this question is a com­
paratively difficult mathematical problem which may still 
have to wait for some time for its final solution. In this paper, 
we will only try to familiarize ourselves with certain aspects 
of the problem in some particularly simple cases which still 
may be of interest to physicists and quantum chemists. 

2. OPERATORS WITH DISTINCT POINT SPECTRA AND 
COMPLETE SETS OF EIGENFUNCTIONS 

Let us start by considering an operator T havillg a dis­
crete point spectrum! A k 1 consisting of distinct (nondegen­
erate) eigenvalues Ak in the complex plane associated with 
the eigenfunctions C k , so that TC k = C k A k . The eigenfunc­
tions ! Ck 1 are assumed to be complete in the sense that they 
form a basis for the space Sj = ! I J, so that one has an expan-
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sion of the type 

(2.1) 

for every element I in S). In such a case, the operator T has 
an adjoint Tt defined through the relation (1.1), and it will 
tum out to be convenient to study the two operators simulta­
neously as a pair (T, Tt ). The operator Tt is assumed to have 
the eigenvalues I-" and the eigenfunctions D. Starting from 
the eigenvalue problems 

TCk = AkCk> TtD=I-"D, 

one gets immediately 

i.e., 

1-"*(DICk ) = (TtDICk ) = (DITCk ) 

=A k (D ICk ), 

(1-"* -Ak)(D ICk ) =0, 

which means that 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

This is the so-called general biorthogonality theorem, and we 
will now show that-in the special case considered in this 
section-it replaces the orthogonality theorem for the self­
adjoint and normal operators in the most useful way. 

So far, we have not made any assumptions about the set 
! I-" ], i.e., about the spectrum of the operator Tt .It may now 
be shown that, to each eigenfunction D to Tt, there exists 
one and only one eigenfunction Ck to T, such that 

(2.6) 

If all the eigenfunctions C k would be orthogonal to D, one 
would have (D II) =:lk (D ICk )ak = 0 for all/, which is 
impossible since D #0. Combining (2.4) and (2.6), one gets 
further Ak = 1-"*, and since all the eigenvalues Ak are dis­
tinct, the function Ck is unique except for a trivial constant. 
This means that one has a unique pairing between the eigen­
functions to T and Tt , and we will introduce the notation D k 

for the eigenfunction to Tt having the eigenvalue I-"k = At 
and the property (2.6). Hence the spectrum! I-"k ] is also 
distinct and discrete. 

Since the spectra I Ak ] and I I-"k ] are both ennumera­
ble, it may be convenient to arrange them in a specific order 
which is invariant under complex conjugation (I-"k = An 
for instance after the properties of their absolute values or 
their real components, or both. 

It is now clear that the eigenfunctions Ck must neces­
sarily be linearly independent. Multiplying the relation 

(2.7) 

to the left by D/, one gets (D/IC/ )a/ = 0, i.e., a/ = O. This 
implies that the expansion (2.1) must be unique. Multiplying 
this relation to the left by D/, one gets further 

(D/I/) = I (D/ICk)ak = (D/IC/)a/, (2.8) 
k 

i.e., 

(2.9) 
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Substitution of (2.9) into (2.1) then gives the relation 

(2.10) 

which corresponds to the following "resolution of the identi­
ty": 

1 = I ICk ) (Dk ICk )-)(Dk I = I Ok' (2.11) 
k k 

Here the operators 

Ok = ICk ) (Dkl 
(Dk ICk ) 

satisfy the following fundamental relations: 

o ~ = Ok, Ok 0/ = 0, Tr Ok = 1, 

(2.12) 

(2.13) 

(2.14) 

The operator Ok is hence an eigenprojector to T associated 
with the eigenvalueA k ; the last relation (2.14) is the "spectral 
resolution" of the operator T. 

For the adjoint operator O! # Ok' one has 

01 = IDk ) (Ckl 
(Ck IDk ) 

and it satisfies the relations 

(2.15) 

(olf=O!' 010;=0, Tr01=1, (2.16) 

I=I01. Tt=IAtOl, (2.18) 
k k 

which are the adjoint ofthe relations (2.13) and (2.14) and 
(2.11). Using the first relation (2.18), one obtains 

1= 1,1= I 0!J= IDk (Ck IDk )-)(Ck II), (2.19) 
k k 

which also implies that the eigenelements I Dk ] form a com­
plete set and may serve as a basis. 

The eigenfunction Dk is determined except for a con­
stant factor. Putting D ~ = (C k ID k ) - I D k , one obtains the 
normalization 

(2.20) 

which will be assumed to be automatically fulfilled in the 
following. 

Introducing the bold symbols) C = I C),C2,C3, .. ·] and 
D = I D),D2,D3 , .. ] one may now write the biorthonormality 
theorem (2.5) and the resolution of the identity (2.11): 

(D/ICk)=~/k' l=IICk ) (Dkl (2.21) 
k 

in the condensed form: 

(DIe) = 1, 1 = IC) (DI· (2.22) 

Since the set C is complete, it is evident that the set D can be 
expressed in the form D = Ca, which gives 
(DIC) = (CalC) = at (qC) = 1 and at = (qC)-1 
= a. Hence 

(2.23) 

i.e., the set D is the reciprocal basis of the basis C, and it is 
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completely determined by the set C. Substituting (2.23) into 
the second relation (2.22), one obtains 

1 = Ie) (qe)-I(q, (2.24) 

which is the completeness relation for a nonorthonormal ba­
sis C. Letting A be the diagonal matrix with the elements 
! Ak l, one can finally write the eigenvalue relations (2.2) in 
the condensed form 

TC = eA, TtD = DA*. (2.25) 

It should be observed that some of the theorems treated 
in this section may be generalized also to operators having 
partly or fully continuous spectra on the real axis or in the 
complex plane. Some of these questions will be treated in a 
forthcoming paper. 

3. BIVARIATIONAL PRINCIPLE FOR A PAIR OF 
ADJOINT OPERATORS 

The variational principle is a fundamental tool in evalu­
ating approximate eigenvalues and eigenfunctions to self­
adjoint and normal operators. It is remarkable that-to 
some extent-it may be generalized also to general linear 
operators and their adjoints. Starting from the eigenvalue 
relations 

TC = CA, Tt D = D/1, 

one gets directly 

..1.= (D ITIC) = Tr Tr 
(D IC) , 

/1= (CITtID) =TrTtrt =..1.* 
(CID) , 

where 

r = IC) (D I r t = ID) (C I 
(D I C ) , (C ID ) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

are "transition operators" satisfying relations of the type 

r 2=r, Trr= 1, r=l=r t . (3.5) 

In connection with the exact expressions (3.2) and (3.3), it is 
now convenient to study the variational forms: 

II = (x21 T Ix l ) , I z = (XII Tt Ixz) = If, (3.6) 
(xzlx l ) (x l lx2 ) 

where x I andx2 are a pair of elements of.\) = ! f J having the 
property (x2lx I) =1= o. Assuming X I and X 2 are variations of 
the true eigenfunctions C and D, respectively, so that 

x I = C + 8C, X 2 = D + 8D, (3.7) 

one obtains 

(T - A·l).xl = (T - A·l)8C, 

(T - A.l)t x 2 = (T - A.l)t 8D. (3.8) 

Starting from (3.6), one gets 

1
1

-..1.= (x2IT-A.llx l ) = (x2IT -A.118C) 
(x2 Ix l ) (x2 Ix l ) 

_ «(T-A.qtx218C) _ «(T-A.l)t8DI8C) 
- (x2Ix

l
) - (x2 Ix l ) 

(3.9) 
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i.e., 

II = 11,+ (8D IT - A.118C) . 
(x2 Ix l ) 

(3.10) 

Since the first-order variation does not appear in this expres­
sion, one has 

(3.11 ) 

Similarly, one gets 8/2 = O. 
The reverse theorem is also true. If 8/1 = 0 for all varia­

tions 8x I and 8x2 of a given pair x I and X 2' then 

(T - II·1)xl = 0, (Tt - If·l)x1 = 0, (3.12) 

i.e., x I and x 2 are eigenelements to T and Tt, respectively, 
associated with the eigenvalues II and 12 = If. For the 
proof, one observes that II = A / B, which gives 

where 

8A -fI8B= (8x2IT-fl·llxl) 

+ (x21T - f l ·118x,) 

= (8x2IT-fl·llx l ) 

(3.13) 

+ (8x l l(T-f l·1)tlx2 )*=0 (3.14) 

for all variations 8x I and 8x2, including also the cases when 
either 8x I = 0 or 8x2 = O. This gives 

(8x 1 1(T - f l ·l)x l ) = 0, (8x ll(T - fl·l)t x 2 ) = 0 
(3.15) 

for a1l8x2 and 8x I' which implies that the relations (3.12) are 
true. 

The variation principle (3.11) may now also be used to 
obtain approximate eigenvalues and eigenelements. If 
cP = ! ifJl,ifJ2,···,ifJm J and ¢ = f tPl,tP2,···,tPm 1 are linearly inde­
pendent sets, one may try expansions of the type 

xl=cpc, x2=¢d (3.16) 
and look for the "best approximations" to the true eigenele­
ments C and D, respectively. Using the bivariational princi­
ple, one has 

f _ (x2ITl x l) = dt(¢ITlcp)c =~ (3.17) 
1- (x2Ix l ) dt ('l\Jlcp)c B 

and further 
8A -f18B 

= 8dt ('l\J1 T - f,.llcp)c + dt ('l\J1 T - f l ·1Icp)8c = 0 
(3.18) 

for all variations 8c and 8d. This gives 

{
('l\JIT-f l .1 ICP )C=O, 

(cplTt -ff-11¢)d=O. 

(3.19) 

(3.20) 

These equations are generalizations of the standard secular 
equations in quantum mechanics, and the approximate ei­
genvalues I, are the roots to the polynomial equation: 

P(z)-I ('l\JIT - z.IIt1» 1= O. (3.21) 

Properties of the approximate eigenfunctions. In order to 
study the solutions to Eqs. (3.19)-(3.21) in greater detail, we 
will introduce the notations 
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(3.23) 

Indicating approximate quantities by a bar, one can write 
II = X. One may now write (3.19) and (3.20) in the form 

Y Ci = ~CiXi' .rt di = ~ t d): r, (3.24) 

which equation systems should be solved for i = 1,2, ... ,m, 
wherez = XI,x2, ... ,xm are the roots to(3.21). Assuming that 
the matrix ~ = <"'I~) is nonsinguiar, and introducing the 
matrix 

T =..1 -Iy, (3.25) 

one can write the first relation (3.24) in the form Tc, = C):I' 
Forming the quadratic matrix y = {cl,cz, .. ·,c", J of order 
m X m, one has Ty = yX, where X is the diagonal matrix 
formed by the approximate eigenvalues Xi' This gives the 
relation 

(3.26) 

which shows that the matrix T is brought to diagonal form 
by means of a similarity transformation y. The approximate 
eigenfunctions are given by the relations C i = e!>c i for 
i = 1,2,3, ... ,m and for the row vector C = {CI,CZ'''''C", J, 
one obtains 

C=~y. (3.27) 

For the approximate eigenfunctions to Tt , one has similarly 
0= "'di and, for the row vector D = {OI'OZ'''''O", J, this 
gives 

D="'~, (3.28) 

where ~ = {dp d2, ... ,dm 1 is a quadratic matrix of order 
m X m formed by the eigenvectors d i . 

In order to study the connection between y and ~, we 
will take the adjoint of (3.26), which gives 

ytTt(yt)-1 = it (3.29) 

or 

(3.30) 

i.e., 

(3.31) 

A comparison with the second relation (3.24) in the form 
.rt ~ = ~ t ~X * shows that one has the connection 

(3.32) 

where one has also chosen a convenient normalization of the 
eigenvectors d; . 

The exact solutions satisfy the relations (2.22) and 
(2.23), and we will now study the behavior of the approxi­
mate eigenfunctions. Using (3.27), (3.28), and (3.32), one gets 
directly 

<OIC) = <"'~Ie!>y) = ~t <"'I~)y = y-I~-I~y = 1m , 

(3.33) 

which means that the basic orthonormality relation is ful­
filled. Since we have used only truncated sets of order m, it is 
evident that the second relation (2.22) cannot be valid, since 
it' expresses a resolution of the identity with respect to the 
entire Hilbert space S). Instead one has 

Q = IC) <01 = I~y) <"'~I = I~)y~t <"'I 
= I~)yy-IA-I<"'I = I~) <"'I~)-I<"'I, (3.34) 
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where Q is an operator having the properties 

QZ=Q, TrQ=m, QL"'Q. (3.35) 

Since Q~ = ~, it is clear that Q is the projector on the sub­
space M", spanned by the elements ~. Similarly 

Qt = I"') <~I",)-I<~I (3.36) 

is the projector on the subspace M '" spanned by the element 
"'. This means that, instead of the second formula (2.22), one 
has the relations 

m 

Q = ICHOI = Lie; HD; I, (3.37) 
i=1 

m 

Qt = 10) <CI = LID;) <ei I, (3.38) 
i= 1 

which may be described as "resolutions" of the projectors 
associated with the subspaces M", and M"" respectively, in 
terms of one-dimensional projectors. However, unless the 
sets ~ and ¢ span the same space one has Q #Q t , which 
means that these projectors are not orthogonal projectors 
but of a more general character which will be further dis­
cussed in Sec. 5. 

In order to study the analog of relation (2.23 I, we will 
form the reciprocal basis Cr to the basis C through the rela­
tion 

Cr = C<ClC)-1 = ~y[yt <~I~)y]-I 
= ~y.y-I<~I~)-I(yt)-I = ~<~I~)-I(yt)-I. 

(3.39) 

Taking the projection of Cr on the subspace M"" one obtains 

Qtcr = I"') <~I",)-I<~I~) <~I~)-I(yt)-I 
= I",)(~t)-I(ytl-I = I¢)~ = 0, (3.40) 

i.e., 

(3.41) 

which is the relation desired. In the case when m--oo and 
the two sets ~ and ¢ become complete, (3.39) goes over into 
(2.23). 

It should be observed that these results are independent 
of any linear transformations ~' = ~a and ",' = ¢13 of the 
basic sets introduced. Starting from a fixed set~, it may be 
convenient to introduce the transformed set 
"'r = "'< e!> I"') -I, since this gives 

<¢rl~) = 1. (3.42) 

One can then describe the set "'r as the set in M", which is 
biorthonormal totheset~inM",. Using (3.34) and(3.36), one 
gets directly 

Q = Ie!» <¢r I, Qt = I¢r) (~I. (3.43) 

According to (3.25), one gets for the fundamental matrix T 

(3.44) 

whereas the approximate solutions are given by the formulas 

C=~y, O=¢r(yt)-I. (3.45) 

In concluding this section, it should be observed that 
the variational quantity II' which gives the approximate ei­
genyalues X;, is a complex number, and this means that the 
optimum value defined by 8f1 = 0 is not a simple "maxi-
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mum" or "minimum" but of a much more complicated char­
acter, the nature of which is hidden in the "hessian" given by 
the second-order term in formula (3.10). In fact, little re­
search has been done so far to investigate how the quantity II 
approaches an eigenvalue A; as m---+oo and the basic sets 
become complete. In the case of self-adjoint operators 
bounded from below, one has the Hylleraas-Undheim se­
paration theorem,4 and it would be interesting to study what 
happens to the roots of the secular equation (31) when one 
more function is added to the sets c!> and l/J, and the order is 
changed from m to (m + 1), etc. Even some computer studies 
may be helpful to get a hint how to approach this problem. 

4. STABILITY PROBLEM FOR A PAIR OF ADJOINT 
OPERATORS 

In the treatment of self-adjoint and normal operators, 
the eigenvalue problem (2.2) was a convenient starting point 
for the construction of sets of eigenfunctions which were 
complete and which hence could be used as a basis for a 
further study of the properties of the Hilbert space.p. In Sec. 
2, we have studied a particular family oflinear operators T 
which by assumption could be treated in a similar way. It 
should be observed, however, that-in the study of a general 
linear operator T -the eigenvalue problem (2.2) is too nar­
rowly formulated to serve as a basis for the theory, and that it 
has to be replaced by more general concepts. Some of these 
will be discussed in this section. 

A subspace V of ~ is said to be stable under the operator 
T, iff or any element/' out of Valso Tf' belongs to V. A stable 
subspace V is said to be irreducible with respect to T, if there 
is no proper subspace of V which is also stable under T; 
otherwise it is said to be reducible. The stability problem and 
the search for irreducible subs paces of T is apparently a gen­
eralization of the eigenvalue problem TC = AC, which cor­
responds to the existence of one-dimensional stable sub­
spaces. The self-adjoint and normal operators are 
characterized by the fact that all their irreducible subspaces 
are one-dimensional, whereas this is usually not true for lin­
ear operators T in general. 

Let us assume that the stable subspace V is of finite 
order p and that it may be spanned by the linearly indepen­
dent set f = [fIJ2""'/P l. The stability property implies 
that 

(4.1) 

where the coefficients form a matrix TJ = [Tk I 1 of order 
p Xp, which may be considered as the matrix representation 
of the operator T in the subspace V with respect to the set f. 
In "fat symbols," one may write (4.1) in the condensed form 
Tf = IT J and, if there is no risk for misunderstanding, we 
will omit the indexfon the matrix. 

If the basis for V undergoes a linear transformation 
f = fa, one has Tf = Tfa = ITa = f(a-ITa) = fT', i.e., 

T' = a-ITa, (4.2) 

which is referred to as a similarity transformation. If A and B 
are quadratic matrices, their determinants fulfill the multi­
plication rule I AB I = I A 1·1 B I· Considering the characteristic 
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polynomial 

P(z)_IT - z.1I, (4.3) 

where z is a complex variable, one gets immediately that 

P'(z)=IT' - z.ll-la- I(T - z.l)al 

=Ia-II'IT - z.ll·l a l 

=IT - z.ll_P(z), (4.4) 

which means that the coefficients of the characteristic polyn­
omial are invariant under linear transformations; they may 
hence be considered as characteristics of the operator Twith 
respect to the subspace V which is, of course, the reason for 
the name of P (z). Other characteristic quantities are the roots 
z = A I,A2'''',AP of the equation P(z) = 0, which are called 
eigenvalues also in the general case, even if there are no ei­
genvalue relations in the ordinary sense. The multiplicity of 
a specific root z = A k will be denoted by g k and referred to as 
the "order of degeneracy" of this root. According to the 
factorial theorem, one has then 

P(z) = II (Ak - z)g" (4.5) 
k 

which relation gives the connection between the coefficients 
and the eigenvalues. 

The question is now whether the subspace Vis reducible 
or not; in the former case it may be decomposed into two 
subspaces VI and V2 which are both stable under the opera­
tor T. In such a case it should be possible to find a basis fl for 
the subspace VI of order PI' so that the elements of fl trans­
form among themselves under the operator T, and similarly 
for the subspace V2 of order P2' In such a case, there exists 
also a similarity transformation (4.2), which changes the ma­
trix T into two diagonal blocks: 

(4.6) 

where T I and T z are of order PI andpz, respectively. It is now 
evident that, if one wants to decompose the space V into 
irreducible subspaces, one should try to find a similarity 
transformation Y which block-diagonalizes the matrix T as 
far as ever possible. 

At this point we observe that one has the elementary 
theorem that, if all the eigenvalues Ak are distinct or nonde­
generate with gk = 1, the matrix T may be completely dia­
gonalized, and all the irreducible subs paces are hence one­
dimensional. In such a case, one may apply the theory of the 
two previous sessions. This means also that all complications 
in the general case are related to the existence of degenerate 
eigenvalues. By considering the simple examples, 

~), 
I 

,i 

o 
(4.7) 

one can easily convince onself there exist elementary matri­
ces which cannot be diagonalized. The eigenvalues are z = A 
with g = 2,3, .. ·, and-if they could be diagonalized--{)ne 
wouldhavey- IJ n y=,i·ln andJn =y·A.l n y-1 =,i·ln , 
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which is certainly a contradiction. Matrices of the type (4.7) 
are known as Jordan blocks, and we will later see that they 
playa fundamental role in the theory of degenerate eigenval­
ues. 

It should be observed that the existence of the stable 
subspace V to the operator T does not given an immediate 
clue as to existence of a subspace vt which is stable under the 
operator Tt and, for the moment, we will consider this as an 
independent problem. Assuming that the subspace vt is 
spanned by the set g = ! gl' g2"'" gq 1. the stability condi­
tion takes the form 

(4.8) 

where R = ! Rk I I may be interpreted as the matrix repre­
sentation of the operator Tt in the space Vt with respect to 
the basis g. One may then write the relation (4.8) in the con­
densed form 

Ttg = gR. (4.9) 

In order to proceed, we will now develop some more math­
ematical tools and auxiliary concepts. 

Projectors associated with a pair of subs paces. Before 
proceeding with the stability problem, we will now study 
whether one can construct a pair of adjoint projectors 0 and 
o t which are associated with two arbitrary subpaces Mf and 
M g , respectively, of the same order p. As we will see, a neces­
sary and sufficient condition for such a construction is that 
there is no element in Mf--except the zero element-which 
is orthogonal to all the elements of Mg. 

Let us assume that Mf and Mg are spanned by the lin­
early independent sets f = ! fl./2""'1;, I and 
g = ! gl' g2"",gp I· Since there is noelementf' = fa in Mf -

except the zero element-which satisfies the orthogonality 
condition (gil') = 0 the equation system 

(gil') = (glf)a = 0 (4.10) 

should have only the trivial solution a = 0, which means that 
I (glf) I #0 and that (glf) is a nonsingular matrix having an 
inverse. 

The problem is to construct a pair of operators 0 and 
o t satisfying the relations 

0 2 = 0, TrO =p, 

Of = f, 0 t g = g. 

(4.l1) 

(4.12) 

Taking an arbitrary element x out of the Hilbert space 
.5 = ! x I ' one has the decompositions 

x = fe + r l = gd + r2 , 

where 

Ox = fe, 0 t X = gd 

(4.13) 

(4.14) 

are the projections of x on Mf and M g , respectively. For the 
remaindersr l andr2 , onehasOr l = OandO t r2 = 0, i.e., they 
are obviously orthogonal to Mg and Mf , respectively: 
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(girl) = (otgl rl ) = (gIOr l ) =0, 

(flr2 ) = (Oflr2 ) = (flO t r2 ) = O. 
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(4.15) 

This gives 

i.e., 

(glx) = (glfe + r l ) = (glf)c, 

(fix) = (flgd + r2 ) = (flg)d, 

c = (glf)-'(glx), 

d = (flg)-'(flx). 

Hence one has for the projections: 

i.e., 

Ox = fe = f(glf)-I(glx), 

otx = gd = g(flg)-I(flx), 

0= If) (glf) -I (gl, 

ot = Ig) (flg)-I(fl· 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

It is immediately checked that these projectors satisfy the 
relations (4.11) and (4.12), and that each one is the adjoint of 
the other. If the sets spanning Mf and Mg undergo linear 
transformations, r = fa and g' = gP, the operators 0 and ° t stay invariant. Introducing the particular set 
gr = g(flg) -I, one gets the relations 

gr = g(flg)-I, (grlf) = (flgr ) = 1, (4.23) 

i.e., the set gr is the basis inMg which is biorthonormal to the 
basis fin Mf . In such a case, one has the simplified relations 

0= If) (gr I, ot = Igr) (fl. (4.24) 

We note that the previously studied operators 0 and 0 t , 
defined by (3.34) and (3.36) or (3.43), are projectors of this 
general type. 

In the special case when the set g may be expanded in 
the set f, and vice-versa, one has apparently gr = f(flf) -I; in 
such a case, the subspaces Mf and Mg are identical and 
0= ot = If) (flf)-I(fl, which means that 0 has become 
an orthogonal projector of a more conventional type. 

Stability problem formulated in terms of projectors. Let 
us consider a subspace V which is stable under the operator 
T, and let us assume that it is described by a projector 0 
having Vas its range. The results of the previous subsection 
have shown that there is an infinite family of projectors hav­
ing the property, and it is hence important to have this non­
uniqueness in mind. The only exception is the orthogonal 
projector which is self-adjoint and hence not general enough 
for our purposes. 

For any element x of.5 = ! x I, the projection I' = Ox 
belongs to V, and the stability condition implies then also 
that Tf' = TOx belongs to V, i.e., OTf' = Tf' or OTOx­
= TOx for all x. This gives the operator relation 

TO=OTO (4.25) 

as an expression for the stability condition. Its implications 
will be studied in greater detail below. A projector 0 which 
satisfies (4.25) is said to reduce the operator T. 

The operator P = 1 - 0 fulfills the relations P 2 = P 
and PO = 0, and it may be interpreted as the projector for 
the complement Vc to the subspace V defined by the projec­
tor O. Since 0 # 0 t , one has usually four different projectors 
0, ot, P, and pt defining the subspaces V, vt, Vc ' and V!, 
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respectively. One may now write the stability condition 
(4.25) for the subspace V in the special form 

PTO=O. (4.26) 

Taking the adjoint relation 0 t Tt pt = 0, one realizes that 
the projector pt reduces the adjoint operator Tt, and that 
hence the subspace V! is stable under Tt. 

Since (pt)t 0 = PO = 0, the subspace V = {I'J and V! 
= { g" J are automatically orthogonal: 

(g" I 1') = (pt g" 101') = ( g" IPO II') = 0, (4.27) 

which is obviously an extension of the previously derived 
biorthogonality theorem (2.5). 

In studying the subspace Vand vt, we note that they 
are obviously of the same order, since Tr 0 = Tr 0 t . We 
observe further that there is no element of V (except the zero 
element) which can be orthogonal to all elements of vt , since 
it would then be orthogonal to vt as well as V!, i.e., to the 
entire Hilbert space S), which is impossible. At this stage 
there is, of course, no reason for the subspace vt to be stable 
under the operator Tt . 

If the subspace Vis of finite order p, the same applies to 
the subspace Vt . Spanning the subspace Vt by the linearly 
independent set g = { gl' g2"'" gp J, we observe that, accord­
ing to (4.8) and the reasoning above, the condition 

I (glf)1 #0 (4.28) 

is automatically fulfilled. In such a case, one can construct 
the projector according to (4.21): 

0= If) (glf)-l(gl. (4.29) 

Multiplying (4.25) to the right by fand observing that Of = f, 
one obtains Tf = OTf, i.e., 

(4.30) 

which is analogous to (4.1) with an explicit expression for the 
matrix T. The second relation may look somewhat unfami­
liar, but it may be obtained from the first by multiplying to 
the left by (gl and solving for T. 

In the case when not only the space Vbut also the com­
plimentary space Vc is stable under T, one has the relation 

(l-P)TP=OTP=O, (4.31) 

in which case the projectors 0 and P are said to decompose 
the operator T. Taking the adjoint relation of(4.31), one 
obtains pt Tt 0 t = 0 or 

Tt ot = ot Tt ot, (4.32) 

which means that the subspace vt defined by ot is stable 
under the operator Tt. Multiplying (4.32) to the right by g 
and observing that 0 t g = g, one obtains Tt g = 0 t Tt g or 

Ttg=gR, R= (flg)-I(fITtg). (4.33) 

Since (fl Tt g) = (Tflg) = (fTlg) = Tt (fig), one has 

R= (flg)-ITt(flg), (4.34) 

which implies that R is a similarity transformation of the 
adjoint matrix Tt. Introducing the special set gr = g(flg)-I 
characterized by the relations (4.23) and (4.24), one gets fin­
ally 

(4.35) 
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where 

(4.36) 

It is evident that it is by no means trivial to determine 
the projectors 0 and P = 1 - 0, so that both Vand Vc be­
come stable under the operator T and that, in practice, it 
may be easier to determine 0 and 0 t so that Vand Vt be­
come stable under Tand Tt , respectively. Fortunately, there 
is one more aspect to the problem. It is evident that the nec­
essary and sufficient condition for the validity of the two 
relations PTO = OTP = 0 or TO = OTO = OT is that 

TO = OT. (4.37) 

In such a case, one has also ot Tt = Tt ot, i.e., if 0 decom­
poses T, then 0 t decomposes Tt . From these two commuta­
tion relations and the explicit expressions for 0 and 0 t ac­
cording to (4.29), one can again derive the relations (4.30) and 
(4.33). . 

Through the relation (4.37), the problem offindlOg the 
projectors which decompose the operators T and Tt may be 
reduced to the problem of finding the projectors which com­
mute with T. If a projector 0 is the sum of two projectors, 
i.e., 0 = 0 1 + O2, which both commute with T, the projec­
tor 0 is said to be reducible-otherwise it is irreducible. 

The problem of finding the irreducible subspaces of T 
and Tt is then essentially reduced to finding a resolution of 
the identity operator in terms of irreducible projectors, 
which commute with the operator T, analogous to (2.11). In 
the special case when there exist one-dimensional stable sub­
spaces, one has according to (2.14) and (2.17) the relation 

TOk = Ok T = Ak Ok' (4.38) 

T tot -OtTt - 1 *ot k- k -/l-k k' (4.39) 

i.e., the operators Ok and O! are eigenprojectors to T and 
T t , respectively. In the following, we will see that, in the 
study of general linear operators T, the relation (4.37) for 
irreducible projectors 0 is going to replace the eigenvalue 
problem (2.2) as a basis for the theory. In the next secti~n, we 
will try to approach the problem of the proper "resolutIOn of 
the identity." 

5. TREATMENT OF THE STABILITY PROBLEM BY 
USING PRODUCT PROJECTION OPERATORS IN THE 
FINITE CASE 

For the sake of simplicity, we will start by considering a 
space A = {x J of finite order n. If a linear oper~tor T defined 
on this space has the eigenvalues Al rA2rA3'''' WIth the degen­
eracies g I' g2' g3"', one may write the characteristic polyno­
mial in the form 

F(z)_( - qn.P(z)-lz·l- TI 

-II (z - Ak )g,. (5.1) 
k 

Of essential importance now is the expansion of the inverse 
of F (z) in terms of partial fractions: 

1 qk (z) 
F(z)-~ (z-Adg, ' 

(5.2) 

where qk (z) is a polynomial in z of a degree equal to or less 
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than (gk - I), which is easily determined by standard alge­
braic methods. Multiplying (5.2) by F (z), one gets the identity 

1-I qk (z) F(z) I qdz) II (z - AIlg
, 

k (z - Ak )g, k 1# 

- I Odz), (5.3) 
k 

where 

Ok (Z)=qk (z) II (z - Al )g, (5.4) 
I*k 

is a polynomial of a degree equal to or less than (n - I), 
which may be expressed in the form 

Because of the relation (5.3), the coefficients a~k I have the 
following simple properties: 

"dkl-I L 0 - , 
k 

I a~kl = 0, for r = 1,2, ... ,n - 1. 
k 

(5.6) 

Instead of the factor (z - Ak .1), we will now introduce the 
operator 

(5.7) 

where we have replaced the complex variable z by the opera­
tor Tand the number 1 by the identity operator I. Instead of 
(5.4), we will now consider the polynomial operator 

OdT) gdT) II (T - AI'I)g, 
I#k 

a6kll + a\kl.T + ahkl .T 2 + ... + a;~'-\.T"-\. 
(5.8) 

Using the relations (5.6), one gets immediately 

IOdT)-I, (5.9) 
k 

and we will now show that it represents a "resolution of the 
identity" of the type desired. 

The operator T satisfies the standard Cayley-Hamilton 
theorem, which means that 

F(T)=II(T-Ak'I)g, =0, (5.10) 
k 

i.e., F(T) is a zero operator. Combining (5.8) and (5.10), one 
gets directly 

(T - Ak 'I)g, Ok (T) = Ok (T)(T - Ak ·/)g, = O. (5.11) 

Since further the factor (T - A k ·1 )g, is contained in all the 
operators OdT) for I #k, one gets also 

OI(T)Ok (T) = O. (5.12) 

Multiplying the relation (5.9) to the left by OdT), one has 

OdT) = I OdT)OdT) = OdT)OI(T), (5.13) 
k 

i.e., the operator OI(T) is an idempotent. According to (5.8), 
the operator Ok (T) is a polynomial in T, which implies that it 
commutes with T: 

TOdT) = OdT)T. (5.14) 

It is now evident that the operators 0 1,02,03,,, form a 
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set of mutually exclusive projectors which commute with T 
and which form a resolution of the identity. The "product 
projection operators" 0\,°2,°3,,, defined by (5.8) represent 
hence a solution to the problem stated in the previous section 
in the finite case, and they define a sequence of subspaces 
VI' V2 , V"". which are not only stable under the operator T 
but also decompose the space. 

Each one of the subspaces V\, V2 , V3 ,'" is characterized 
by an "eigenvalue" A \,A2,A 3,· .. , which is defined as a root to 
the characteristic equation P (z) = O. In the case of a nonde­
generate root, Eq. (5.11) corresponds to an ordinary eigenva­
lue relation of the type (4.38), but in the degenerate case 
things are considerably more complicated. It should be ob­
served, however, that-in the case of a general linear opera­
tor T -the relation (5.11) replaces the simple eigenvalue 
problem which was characteristic for the self-adjoint and 
normal operators. This means also that, even if one has a 
resolution of the identity (5.9), there is no simple "spectral 
resolution" of the operator T in the general case. 

Connection between the two types ofprojectors. The pro­
duct projection operator Ok (T) defined by (5.8) and its ad­
joint operator look very different from the projectors (4.21) 
and (4.22) previously considered, and it may hence be inter­
esting to study the connection between them. 

For this purpose, we need some elementary theorems 
about projectors P # 1 in general satisfying the relation 
p 2 

= P. If X = lX\,x2, ... ,xn) is a basis for the entire space 
A = ! x), then the subspace A \ = PA is spanned by the set 
X' = PX = 1 PXp PX2"",PXIl I, which is certainly linearly 
dependent. However, it may be replaced by a linearly inde­
pendent set XI' if one goes through all elements X ~ = PXk 

in order, and leaves out all elements X ~ for which either 
X ~ = PXk = 0 or X ~ is a linear combination of the preced­
ing elements X; ,x; , ... ,1' ~ \ . Similarly the subspace 
A2 = (1 - P)A is spanned by the set X" = (1 - P lX, which 
may be replaced by the linearly independent set X 2• 

For any element x = Xa, one has then the resolution 

x = Px + (1 - P)x = PXa + (1 - P )Xa 

= X\a\ + X 2a2, (5.15) 

where the linear dependencies have been removed. This that 
the combination (X\,X2) forms another basis for the entire 
space A = 1 x ). Since further 

(5.16) 

it is evident that the operator Pwith respect to this basis has a 
matrix of the form 

(5.17) 

where Ig is a unit matrix of the same order g as the subspace 
A \ = PA. Hence every projector P may be diagonalized with 
the eigenvalues 0 or 1, and one has 

Tr P=g, (5.18) 

where the integer g gives the order of the range of P. In the 
special case when g = 0, one has also P = O. 

Let us now start by considering the product projection 
operator OdT) and its adjoint operator which have the 
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ranges Vk and V!, respectively. In the following, we will 
omit the index k if there is no risk of misunderstanding. The 
subspaces Vand vt are spanned by the linearly dependent 
sets OX and 0 t X, which are then replaced by the linearly 
independent sets f and g, respectively, by using the proce­
dure described above. One has 

Of = f, 0 t g = g. (5.19) 

Since further 

TrO=TrO t =g, (5.20) 

the subspaces Vand vt are of the same order. According to 
(4.21) and (4.22), one may now introduce the projectors: 

Q= If)(glf)-I(gl, (5.21) 

Qt = Ig)(flg)-I(fl, (5.22) 

where Tr Q = Tr Qt = g. According to (5.19), one has 
further 0 If) = If) and (giO = (ot gl = (gl, which gives 

OQ = QO = Q. (5.23) 

For the difference P = 0 - Q, one gets hence that P 2 

=0 2 +Q2 _ OQ- QO= ° -Q=P, and that 
Tr P = Tr 0 - Tr Q = O. Hence P = 0, which implies 

0= Q. (5.24) 

Hence the product projector operator 0 (T) and the projector 
Q given by (5.21) are different expressions for one and the 
same projector. 

In the construction above, the sets f and g are obtained 
from the basis X by means of the projectors ° and 0 t , re­
spectively, independently of each other. Instead of the origi­
nal set g, one may find it convenient to introduce the recipro­
cal set gr = g(flg) -I having the property (gr If) = 1. 
According to (4.35) and (4.36), one then has the relations 

IT = fT, Tt gr = gr Tt, (5.25) 

where 
T = (grITlf), (5.26) 

as expressions for the stability properties of the sets f and gr 
under the operators Tand Tt, respectively. 

In certain connections, it may be convenient to use a 
slightly different approach, in which the linearly indepen­
dent set f is first established and a new set g is then intro­
duced by the formula 

g = Otf. (5.27) 

Since (glf) = (ot flf) = (flO If) = (flf), the matrix (glf) is 
also nonsingular, and the elements in g are linearly indepen­
dent. For the projector Q, one obtains 

Q= If)(glf)-I(gl = If)(flf)-I(fIO=QfO, (5.28) 

where Of is the self-adjoint (orthogonal) projector on the 
space spanned by the set f. For the reciprocal set gr 
= g(flin -I, one obtains finally 

gr = 0 t f(flg) -I = 0 t f(flf) -I. (5.29) 

Nilpotent operators. It is interesting to observe that, even if 
the relation (5.11) is to be considered as a generalization of 
the ordinary eigenvalue problem for gk > 1, it leads to con­
siderations of a rather different type. In treating a specific 
stable subspace Vk , we will again in the following temporar­
ily omit the index k, if there is no risk for misunderstanding. 
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Using the notation (5.7), one may now write (5.11) in the 
form 

~/=O, (5.30) 

where N = T - AI, for all elementslofthe subspace V. If 
there exists at least one element Is in V, for which 

~-'f, #0, (5.31) 

one says that the operator N is nilpotent of order g within the 
subspace V. In such a case, it is convenient to introduce a 
sequence of elements f = 1/,,/2,j""'./g ] through the recur­
sion formula/r ._, = NI" i.e., 

I, = N12' 12 = N/;, .. ·,/g __ 1 = N/g, Ig =Is, (5.32) 

which implies that Ir = ~ - r Is. We note particularly that, 
according to (5.31), one has/, = ~- lis #0, whereas 
Nil = N 2/2 = ... = ~ /g = O. The elements in the sequence f 
are certainly linearly independent for, if one assumes the 
existence of a linear relation 

(5.33) 

and multiplies it successively to the left by ~ - I , ~ - 2, ... , 

N, one gets a sequence of equations from which one may 
conclude that 

ag =ag _, =···=a, =0, (5.34) 

which proves the statement. 
Choosing the linearly independent set f as a basis for the 

subspace V, one has 
Nf = N [/'./2""./g] = [0./1./2,···,/g _ I ]. The correspond­
ing matrix N hence consists of a sequence of I's in the diag­
onal one step above the main diagonal, whereas all other 
elements are vanishing; we note that such matrices are com­
mon in physics as representations of "ladder operators", and 
that N is a typical step-up operator. One has further 
N 2f = [0,0./'./2""./g _ 2]' etc., which implies that the se­
quence of subs paces V, V' = NV, V" = NV' .. ·· have the or­
ders g, g - 1, g - 2, ... ,1; the order of the subspace hence 
decreases by one unit every time the operator N is applied. 
This is an important result which we will use in the following 
subsection. Going back to the operator T = N + AI, one has 
Tf = J.f + \ 0./1./2, ... ,/g _ I ], i.e., 

TI, = All' 

Til = A/2 + II' 
Ti, = AI, + 12' 

Tig = Aig + Ig _ , , 
which gives the matrix representation 

A 100 

o A 1 0 

T= 

o 0 

o 0 

o 
o 

o 
o 

A 1 

o A 
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for the operator T in the subspace V with respect to the basis 
f.1t should be observed that, even if the first relation in (5.35) 
is an ordinary eigenvalue problem for the eigenelementfl' 
the same functionfl occurs also in the line below-hence the 
subspace !fl J is stable under T, but it reduces without de­
composing the operator. 

In elementary matrix theory, one actually starts from 
the fact that--even in the case of a degenerate eigenvalue 
A-the eigenvalue problem TC = AC has at least one solu­
tion C, which then is chosen as the first element of a basis 
(C, Y2' Y3"., Y m ). Considering the eigenvalue problem in the 
space spanned by the elements (Y2, Y3 ,,,., Y m ) and repeating 
the reasoning, one finds another eigenelement C' associated 
with another eigenvalue A " etc. By repeating the process one 
shows that, by means of a proper choice of basis-i.e., by 
means of a similarity transformation--every matrix T may 
be triangularized to a form in which all the elements below 
the main diagonal are identically vanishing, whereas the ele­
ments on the main diagonal may be identified with the eigen­
values as defined by the secular equation P (z) = 0. 

Using this theorem, one can now easily show that the 
matrix (5.36) representing a Jordan block of order g in accor­
dance with (4.5) cannot be further block-diagonalized. Let us 
assume temporarily that it may be transformed into two di­
agonal blocks of order PI and P2, respectively, withpI»P2' 
which are subsequently triangularized. Studying the powers 
of the matrix N = T - ,1·1, one obtains directly that 
NP' = 0, which means that the operator N is nilpotent of 
order PI or less within the entire subspace V, which contra­
dicts the relation (5.31). Hence the Jordan block (5.36) can­
not be further block-diagonalized, and the stable subspace V 
is irreducible. 
Segre characteristics. If the relation (5.31) is not fulfilled for 
anyelement/s in V, things are going to be more complicated, 
and the space V is going to turn out to be reducible. To every 
elementfin the stable subspace V = !fJ defined by the pro­
jector 0 (T), one may now assign a specific exponent m(j) or 
index such that: 

(5.37) 

where m(j)<,g. Starting out from an arbitrary elementfand 
using the construction of the previous subsection, one can 
now construct a stable and irreducible subspace V (j) or order 
m(j) which is associated with the element! Such a subspace 
V (j) reduces the operator T, and the question now is how the 
elementfshould be chosen so that the subspace V(j) also 
decomposes the operator T. 

The minimal index m is the smallest number having the 
property that ~ f = ° for all elements f of the stable sub­
space V defined by the projector 0 (T) and-as we will see in 
the following-it plays a fundamental role in the theory as 
well as in the physical applications. 

It would be very nice if one could find a sequence of 
elementsfl,f",fm ,'" in the subspace V so that the irreduci­
ble subspaces V (jt!, V (jIl)' V (jIll ),. .. decompose Vin an ex­
haustive way. The orders gI, gIl' gm ,'" of these subspaces 
are known as the Segre characteristics of the subspace Vasso­
ciated with the degenerate eigenvalue A, and we will now 
study the necessary and sufficient conditions for such a de-
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com posi tion. 
For this purpose it is convenient to study the sequence 

of spaces 

V,V'=NV, V"=NV'=N2V,. .. (5.38) 

having the orders g,g' ,g" ,. ... Since the order of an irreducible 
subspace V (j) is diminished by one unit every time the opera­
tor N is applied, it is now easy to find the connection between 
the Segn! characteristics g) ,gIl ,gIll ,. .. and the sequenceg,g', 
g" ,. ... This connection is most easily demonstrated by a cou­
ple of numerical examples. 

Let us start by considering a stable subspace V of order 
5 having the Segre characteristics (3,2). This gives, for their 
contributions to the orders of the subs paces V, V', V", 

Contributions to order of: V, V' , V" 

m =3: 3, 2, 

m=2: 2, 
(5.39) 

5, 3, 

i.e., one gets the sequence (5,3,1). Conversely, if one starts 
from the following sequence g,g' ,g" ,,,.: 

(14,8,4,2,1,0) (5.40) 

for the orders of the spaces (5.38), one can now easily derive a 
necessary condition for the Segre characteristics-provided 
that the corresponding subspaces really exist and add up to 
V. There is a total of five non vanishing numbers in the se­
quence (5.40) and, since the space VIS) = N S V has the order 
zero, the minimal index is m = 5. There should hence exist 
at least one irreducible subspace of order m = 5 and, since 
g(4) = 1, there is apparently exactly one irreducible subspace 
of this order, which contributes the sequence (5,4,3,2, I) to 
the sequence (5.40). This gives the difference 

Contributions to: V, V' , V" , V'" , V'''' 
14, 8, 4, 2, 

m=5 5, 4, 3, 2, 1 

9, 4, 1, 0, ° (5.41) 

Here (9,4,1) is a new sequence of numbers corresponding to 
m I = 3 and the contributions (3,2,1). Subtracting these con­
tributions, one gets 

Contributions to: V, V' , V" 

9, 4, 
(5.42) 

m l =3 3, 2, 1 ' 

6, 2, ° 
which result indicates that there must be exactly two sub­
spaces having m 2 = 2, each one with the contributions (2,1). 
After subtracting (4,2) one is left with a single number 2, 
which corresponds to two subspaces having m3 = 1. Re­
membering that the index of each sequence equals the num­
ber of non vanishing figures and that one should start each 
subtraction procedure from the right, one can now write this 
decomposition directly in the following way: 
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Contributions to: V. V' . V", V/II . V'''' 

m\.g 14. 8. 4. 2. 

5 5. 4. 3. 2. 

3 3. 2. 

2 2. 

2 2. 

(5.43) 

which result shows that the only possible Segre characteris­
tics are represented by the sequence (5.3.2.2.1.1). One can get 
the same results by considering the second-order differences: 

g: 14 8 4 2 0 
L1g: 6 4 2 

..1 2g: 2 2 o l' 

m- 2 3 4 5 

(5.44) 

where the last line indicates that there are two subs paces of 
order m = 1. two subs paces of order m = 2. one subspace of 
order m = 3. and one subspace of order m = 5. 

It is easily shown that this theorem about the Segre 
characteristics is generally true. Letting slPl denote the num­
ber of irreducible subspaces of order p. one should prove that 

SIPI = ..1 2gIP ~ II = glP ~ II - 2gIPI + glP + I). (5.45) 

Observing that glml = glm + II = ... = O. one has 

simi = glm ~ II = ..1 2glm ~ II. 

slm _. I) = glm ~ 21 _ 2glm -- II = ..1 2glm ~ 21. 

(5.46) 

The remaining part of the proof is provided by induction. 
According to the general construction of Segre characteris­
tics. as examplified in the table (5.43). one has 
Slk~11 =glk~21 _2slkl -3Slk+11 

- 4Slk + 21 - ... - (m + 2 - k )slml 

=glk~21_2L12glk~11 _3L1 2glk l _4L1 2glk+ II_ ... 

= ..1 2glk ~ 21 . (5.47) 

Here the last step is achieved by using the recursion formulas 
for the second-order differences. If E is the step operator. one 
has 1 = (1 - E)2(1 - E)~2 =..1 2(1 + 2E + 3E 2 + ... ). or 
the identity 

glk 21 = ..1 2glk -- 2) + 2..1 2glk .... II 

+ 3..1 2glk I + 4..1 2glk + II + .... (5.48) 

which is the formula needed. Hence the theorem (5.45) is 
proven. 

Before going into the problem of decomposing the sta­
ble subspace V into irreducible subspaces corresponding to 
Jordan blocks. it may be convenient to go into a few more 
mathematical details as to the properties of the operators 
N.N 2.N 3 

..... N'" ~ I . For this purpose. we will consider a gen-
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erallinear operator M defined on a subspace V of order g. 
which is stable under M. If the subspace V is spanned by the 
linearly independent set f. one has Mf = fM. where 
M = ! MI •...• M g J is a quadratic matrix which consists of the 
column vectors MI' M 2 ..... Mg . Considering the transformed 
set f' = Mf = fM. one hasf~ = fM k • and the number of 
linearly independent elementsf~ in the set f' hence equals 
the number oflinearly independent column vectors Mk in 
the matrix M. This number is also given by the rank r of the 
matrix M. 

In elementary matrix theory. one says that a singular 
matrix M of order g having a vanishing determinant. 
I M I = O. is of rank r if at least one minor to M of order r is 
different from zero. whereas all minors of order (r + 1) are 
vanishing. In such a case. one has the fundamental theorem 
that the equation system 

(5.49) 

has exactly (g - r) linearly independent solutions a; for 
i = 1.2 ..... g - r. which form a rectangular matrix a = ! a l • 

a2 ..... ag _ r J of order g X (g - r). Putting]; = fa;. one may 
construct a sequence f = !]; J = fa of (g - r) linearly inde­
pendent elements]; which all have the property 

M]; = Mfa; = fMa; = O. (5.50) 

If a basis for the subspace V is arranged such that it starts 
with these elements]; for i = 1.2 ..... g - r. one then gets 
through the operator M automatically a basis for the space 
V' = MVwhich contains r linearly independent elements. 
This theorem is of particular importance in contructing the 
basis for the subspace Vim - II = Nlm ~ II V of order simi. 
which forms the starting point for the decomposition proce­
dure. 

In the following. we will apply some of these results to 
the operator sequence M = N.N 2 

..... N'" ~ I . Starting out 
from the relation Nf = fN. it is evident that the sequence 

I" (m-l) g.g.g ..... g • (5.51) 

which is fundamental in determining the Segre characteris­
tics. corresponds to the ranks of the sequence of matrices 

(5.52) 

i.e .• to the numbers of linearly independent column vectors 
in each one of them. It should be observed that the evalua­
tion of these numbers becomes particularly simple. if the 
matrix N has been brought to triangular form from the very 
beginning. 

Construction of the Jordan projectors. In matrix theory. 
the decomposition of a nilpotent matrix N into Jordan 
blocks may be carried out by elementary algebraic methods 
involving only the handlings of vectors and matrices. Here 
we will try a slightly different approach. which adds one 
more aspect to the problem. 

Let us assume that the stable subspace V defined by the 
product projection operator 0 (T) has the minimal index m. 
This means that. for every element x of the full space 
A = ! x J. one has N'" 0 (T)x = O. i.e .• the operator relation 
N'" 0 (T) = O. Since further the operators Nand 0 commute. 
one gets 

N'" 0 = ON'" . (5.53) 
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as well as the adjoint relation 

(Nt)mot = ot(Nt)m. (5.54) 

This implies that the subspace V t defined by 0 t has a mini­
mal index m t with respect to 0 t , having the property 
m t <om. It may be shown, however, that m t = m and that 
the subspace V t has indeed the same Segre characteristics as 
the subspace V. For this purpose, we may now span the space 
Vt = ot A by the set g = Otfintroduced by (5.27) orby the 
reciprocal set gr = g(flg) -I = ot f(flf) -I. According to 
(5.25), one has the relations 

Nf = fN, Ntgr = grNt, 

where Nt is the adjoint of the matrix N = (gr IN I I). How­
ever, since the matrices 

(5.55) 

have the same ranks as the matrices (5.52), the Segre charac­
teristics for the subspace V t are the same as those for the 
subspace V. 

Let us now consider an arbitrary element Is of index m 
of the subspace V such that 

~ Is = 0, ~ - lis #0, (5.56) 

and let us further introduce the sequence 

II =~-IIs, 12 = ~-21s, ... , 
Ik = ~ - kls ,···Jm = In (5.57) 

in accordance with (5.32). The index s indicates thatls is the 
"starting element" for the construction. We recall that the 
elements [/IJ2, ... Jm l are linearly independent and that 
they span the irreducible subspace V(Is) of order m. 

By means of the adjoint product projector ot, one can 
now go from the subspace V to the subspace vt through the 
formula V t = 0 t Vin accordance with the relation (5.27). Of 
particular interest is the projection 

vt - 0 t Vim - I) (5.58) Im--I) - , 

since it turns out Vim _ I) may be spanned by slm) linearly 
independent elements all having the index m. 

For the sake of simplicity, we will start by considering a 
single element II = ~ - lis and its projection: 

g, = ot/l • (5.59) 

Since (gs III) = (ot/ll/l) = (/11011) = (/1111)#0, one 
has necessarily g, # 0. In addition, we will now introduce the 
sequence 

gl=g" g2=Ntgl , 

i.e., 

gk =(Nt)k-Igs =(Nt)k-10t/l' 

In general, one has 

(gkl/k) = «(Nt)k-IOt/ll~-kls) 

= (/,I~-'Is) = (/11/1)#0, 

and this means that no one of the functions g k for 

(5.60) 

(5.61) 

(5.62) 

k = 1,2, ... ,m can be identically vanishing. In particular, one 
has gm = (Nt )m - I gs # 0, which means that the starting ele­
mentgs is of index m. 
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It is now easily shown that the matrix.1 = (glf) formed 
by the sets f and g of order m is nonsingular. Observing that 
Of = f, one has 

Llkl = (gkl.ft) = «(Nt)k-IOt/ll~-IIs) 
= (/11~+lk-/)-IIIs) = tk _ l , (5.63) 

which shows that Llkl is a function of the difference (k - /) 
only. Of course, one has Llkl = 0, as soon as 
m + (k - /) - 1 >m, i.e., whenever k - I> 1. This means 
that .1 is a triangular matrix with vanishing elements below 
the diagonal having the form 

(5.64) 

(5.65) 

According to a well-known theorem-see, e.g., Appen­
dix A-such a matrix has an inverse d = .1- I, which is also 
triangular and has the property d kl = d k _ I' Since the set 
f = [/IJ2, ... Jm l is stable under the operator N, and the set 
g = [gl,g2, ... ,gm l is stable under the operator Nt, one can 
now expect that the projector 

Q= If)(glf)-I(gl = Il/k)dkl(gll (5.66) 
k,/ 

constructed according to (4.21) should decompose the opera­
tor N, i.e., NQ = QN. Observing that Nlk = Ik _ 1 , and that 
(giIN = (Nt gil = (gl + 1 I, and that 
dk + I.l = dk + 1 -I = dk,/_ I' one obtains that 

NQ = Il/k - 1 )dk,/ (gil = Il/k )dk + 1,/ (gil 
~I ~I 

= Il/k )dk,/_I (gil = Ilfk )dk,/ (gl+ 1 I = QN, (5.67) 
~I ~I 

which proves the statement. It is interesting to observe that, 
if one introduces the reciprocal basis 

gr = g(flg) - I, 

one has not only the property (gr If) = 1 but also 

Nt gr.k = gr.k + 1 • 

(5.68) 

(5.69) 

We note that the projector Q defined by (5.66) is essentially 
characterized by the starting elementls, and that it is some­
times convenient to denote it by the symbol Q lis ). 

In order to proceed, we note that one also has the rela­
tions OQ = QO = Q. That means that the operator 

p=o-Q (5.70) 

has the property P 2 = 0 2 + Q 2 - OQ - QO = 0 - Q = P, 
i.e., that P is a projector having the order 
Tr P = Tr 0 - Tr Q = g - m. One has further 
QP = PQ = 0, which means that Q and P are mutually ex­
clusive projectors. 

In the stable subspace Vp = PV, the number ofirredu­
cible subs paces of order m has been decreased by one unit in 
comparison to V. If slm) >2, one should now pick another 
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starting element I; of index m out of the subspace Vp and 
repeat the procedure leading to the construction of the new 
projector Q ((;). Since the starting element I; satisfied the 
relation Pj; = I;, and the operators P and N commute, one 
obtains 

PQ((;) = Q((;)P= Q((;), (5.71) 

which implies that the projectors Q if. ) and Q ((;) are mutual­
ly exclusive. 

Proceeding in this way, one first exhausts all the linear­
ly independent elements of index m, and then continues with 
the elements of index (m - 1), etc. In this way, one obtains a 
decomposition of the product projection operator 0 (T) into 
mutuallyexclusiveprojectorsQ (fs ),Q ((;),Q ((;')'''', which all 
commute with N, and we observe that the Segre characteris­
tics given by the second-order difference (5.45) are of great 
help as guidance in this connection. 

In concluding this subsection, it should be observed 
that the construction of the associated irreducible subs paces 
V(() and vt (g) given above is not particularly elegant, but it 
gives at least the associated projector Q and Qt without any 
further ado. 

Reduced Cayley-Hamilton equation. One of the most 
important results in this section is the establishment of the 
existence of a minimal index mk for each subspace Vk de­
fined by a product projection operator Ok (T). From our dis­
cussion, it is evident that m k must be identical to the largest 
Segre characteristic associated with the space Vk . Instead of 
the fundamental relations (5.11), one has now 

(5.72) 

in accordance wi th (5.53 ). For self-adjoint and normal opera­
tors, one can actually prove the general theorem that all 
mk = 1, but here we will treat the general case when mk;;;' 1. 

It is now worthwhile to go back and re-examine the 
reasoning which formed the start of this section. Instead of 
the characteristic polynomial (5.1), we will here consider the 
reduced characteristic polynomial: 

Ft(z)=II(z - Tkt', (5.73) 
k 

where the minimal indices mk replace the degeneraciesgk in 
the previous expression. Expanding the inverse of Ft(z) in 
terms of partial fractions, 

_1_=2: rdz) , 
Ft(z) k (z - Ak )m, 

(5.74) 

where r k (z) is a specific polynomial in z of a degree equal to or 
less than (m" - 1), and introducing the notations 

o ~I(z) rk (z) II (z - Al r', (5.75) 
I#k 

one obtains the algebraic identity 

I=IO~)(z). (5.76) 
k 

The operators 

O~)(T) = rdT) II (T - ArI)m, (5.77) 
I#k 
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are polynomials in the operator T, which apparently satisfy 
the identity 

(5.78) 

Observing that the operator O~)(T) = r k (T)n l #N;'" con­
tains the factor N;"', one gets immediately for I =f. k 

O~t)(T)OI(T) = OdT)O~I(T) = 0, (5.79) 

in accordance with (5.72). Multiplying the resolution (5.9) to 
the left by 0 ~ I( T), one hence obtains 

O~\)(T) = O~)(T)(~OI(T)) = ~O~t)(T)OI(T) 
= O~)(T)OdT) = OdT)O~)(T). (5.80) 

Using (5.72) once more, one gets further 

N'k'O~I(T) = O~tl(T)N'k' = 0, (5.81) 

as well as 

(5.82) 

Multiplying (5.78) to the left by O~I(T), one has also 

O\tl(T) = O\tl(T)[ ~O~)(T)] = ~O\\)(T)O~I(T) 
= O\\)(T)O\t)(T). (5.83) 

The relations (5.82) and (5.83) indicate that the operators 
o ~I(T) for k = 1,2,3, ... are mutually exclusive projectors 
which form a resolution of the identity (5.78). Since further 

TO~tl = O~IT, (5.84) 

it is evident that the projectors O~) decompose the operator 
Tin accordance with (4.37). These projectors provide a de­
composition of the full space A = {x I into subspace 
V~I = O~IA, which are stable under the operator T. Since 
further Ok V~I = V~I, it is clear that the subspaces V~I are 
going to replace the previously used subs paces Vk in our 
discussions; in fact, they are identical. 

Finally, we note that if the product operator 

(5.85) 

works on the identity operator as defined by (5.78), one gets 
the result zero, which implies Ft(T)X = ° for all elements x 
in the space A = ! x j. The relation 

FI(T) = II(T - Ak .I)m, = 0, (5.86) 
k 

is known as the reduced Cayley-Hamilton equation. 
It is interesting to observe that, even if the space 

A = ! x I is of infinite order, one may still apply most of the 
formulas in this subsection as long as the operator T has only 
afinite number of eigenvalues A t,A,2,A,3'''' in the complex 
plane withfinite minimal indices m t ,m2,m3,· .. --even if the 
degeneracies themselves, gt,g2,g3'''', are infinite. In such a 
case, the starting point for the theory is the reduced Cayley­
Hamilton equation (5.86), whereas fundamental projectors 
O~I are again defined by the relation (5.77). 

Many equations in physics may indeed be interpreted as 
reduced Cayley-Hamilton equations. If one considers the 
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exchange operator P 12 having the property PIJ( 1.2) = f(2.I). 
it satisfies the relation P ~ 2 = I or 

(P12 - I)(P12 + l) = o. (5.87) 

i.e .• P 12 has the eigenvalue A = + 1 withm = I.g= 00. and 
the eigenvalue A = - 1 with m = l.g = 00. In many appli­
cations. this approach has been used successfully to treat the 
constants of motionS of many-particle systems in the quan­
tum theory of matter. 

Summary; the classical canonical form. Let us now try 
to summarize the results of this section and compare them 
with those previously obtained. We have been studying a 
linear space A = ! x 1 of finite order n. but the results are also 
applicable to the case of a finite order stable subspace of an 
infinite Hilbert space. Let us span the space A = ! x J by a 
linearly independent set X = ! X I,x2,x3 •... ,xn J which serves 
as a basis. so that one has the expansion theorem 

(5.88) 

One has the metric matrix.1 = (XIX) with the elements 
Li kl = (Xk IXI ) having the property.1t =.11. The reciprocal 
basis X, = X.1- I satisfies the relations 

(XIX,) = (X, IX) = 1. (5.89) 

and X and X, are said to be biorthonormal. The basis 
'I' = X.1- 1/2 satisfies the relation ('1'1'1') = 1. and it is hence 
orthonormal in the ordinary sense; we note that the set 'I' is 
self-reciprocal. Multiplying the relation (5.88) to the left by 
(X, I. and solving for a. one obtains 

a = (X, Ix). (5.90) 

This means that the expansion theorem may be written in the 
form x = X (X, Ix) for all x. which gives the operator rela­
tions 

1= IX)(X,I = IX).1- I(XI 

= IX,)(XI. (5.91) 

which may be considered as various types of "resolutions of 
the iden ti ty. " 

Let us now consider a pair of adjoint operators Tand Tt 
characterized by the relations 

TX = XT. Tt X = XR. (5.92) 

where T and R may be considered as the matrix representa­
tions of T and Tt with respect to the basis X. IF x = Xa. one 
gets directly Tx = XTa and Tt x = XRa. so the operators are 
fully described by their matrices. Multiplying (5.92) to the 
left by (X, I and solving for T and R. respectively. one has 

T=(X,ITX). R=(X,ITtX). (5.93) 

Using the definition (1.1). one obtains further 

R= (X,ITtX) = (X.1- IITtX) =.1- I(XITtX) 

=.1- I(TXIX) =.1- I(XTIX) =.1- ITt.1. (5.94) 

If the basis undergoes a linear transformation X' = Xa. the 
matrix T undergoes the similarity transformation 
T' = a - ITa. Putting X, = X.1- I. one gets directly 
R, = .1R.1- I = Tt. Hence. one has 

TX = XT. Tt X, = X, Tt • (5.95) 
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where Tt is the adjoint of the matrix T. 
In connection with relation (4.4). we discussed pre­

viously how a matrix T could be block-diagonalized as far as 
ever possible by means of a similarity transformation y. The 
answer obtained in this section is well known in matrix the­
ory; every matrix T may first of all be block-diagonalized 
after its eigenvalues A 1.A2.A3 .... and. if the eigenvalue A is 
nondegenerate. the corresponding block is of order 1 and 
consists of the eigenvalue on the diagonal. However. if the 
eigenvalue A is degenerate of order g. the corresponding di­
agonal block may be transformed into a sequence of Jordan 
blocks of type (4.5). the orders of which are given by the 
Segre characteristics. This form A of the matrix is known as 
the classical canonical form. Hence one has 

y-ITy = A. (5.96) 

as well as the adjoint relation 

ytTt (yt )-1 = At, (5.97) 

where Athas the complex conjugate eigenvalues A t on the 
diagonal and the l's below instead of above this diagonal. 

Many of the relations found in Sec. 2 for operators hav­
ing only distinct eigenvalues may now be extended also to 
more general operators. Introducing the eigenbases C and D 
to the operators Tand Tt • respectively. through the relation 

C = Xy. D = X,(yt)-I. (5.98) 

one gets immediately 

TC = CA. Tt D = DA t . (5.99) 

One has further 

(DIC) = (X,(yt )-IIXy) = 1'-1 (X, IX)y = 1. (5.100) 

which is a generalization of the biorthonormality theorem. It 
is interesting to observe that the set D may be evaluated from 
the set C. since D is identical to the reciprocal basis 
C, = C(qC)-I: 

C, = C(qC) -I = Xy[(XyIXy)]-' 

= Xy[yt (XIX)y]-' 

= Xyy-' (XIX) -'(yt )-1 

= X,(yt)-' = D. (5.101) 

In Sec. 2. we had further been able to express the resolution 
of the identity in form of the second relation (2.22). Here one 
gets similarly 

IC)(DI = IXy)(X,(yt)-'1 

= IX)yy-' (X, I 

= IX) (X, I = 1. (5.102) 

as well as the adjoint relation 

ID)(q = 1. (5.103) 

Letting the operators T and Tt work on (5.101) and (5.103). 
respectively, one obtains 

T= IC)A(DI. Tt = ID)At (C!, (5.104) 

which are the analogs of the spectral resolutions in the dis­
tinct case. However. because of the existence of degenerate 
eigenvalues and Jordan blocks, they are now slightly more 
complicated than before. 
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In concluding this subsection, we note that by replacing 
the eigenvalue problem with the stability problem-or, 
which is the same, the diagonalization procedure with the 
block-diagonalization procedure-one may be able to gener­
alize most of the fundamental theorems found in Sec. 2 also 
to more general operators. 

Bivariational principle and the stability problem. So far, 
little has been said in the summary about any possible exten­
sions of the bivariational principle of Sec. 3 to the stability 
problem formulated in terms of subspaces and projectors. In 
order to proceed, we observe6 that if a physical system is 
described by a system operator r having the property 
rt = r, then the expectation value of a physical observable 
F = Ft is given by the expression 

(F)av = Tr Fr /Tr r. (5.105) 

In the case of a homogeneous ensemble, one has the auxiliary 
condition r 2 = r Tr r. 

In studying a general linear operator T, we will in ana­
logy with (5.105) consider the quantities 

II = Tr Tr /Tr r, 12 = Tr Tt rt /Tr r t = If, 
(5.106) 

where r =l=rt. These expressions are obvious generaliza­
tions of(3.6) for r = Ix I) (x2 Ix l ) -I (x2 1. In order to connect 
the quantities (5.106) with the stability problem, we will now 
assume that the general operator is a projector satisfying the 
relations 

r 2 
= r, Tr r=g. (5.107) 

For any variations 8r of the operator r, one gets then the 
auxiliary conditions 

8r = r8r + 8r·r, r8rr = 0, Tr 8r = 0, (5.108) 

where the second relation is obtained from the first by multi­
plying to the left or right by r. For the variation of II' one 
obtains 

81 1 = (l/Tr r)[Tr T8r-II Tr8r] 

= (l/g)Tr(Tr + rT)8r. (5.109) 

One would hence perhaps expect that a sufficient condition 
that 811 = 0 is that Tr + rT = O. In reality, this condition 
is never fulfilled, since it leads to a contradiction. Instead, 
one has the simple condition Tr = rTsince, in such a case, 
one has 

81 1 = (2/g) Tr Tr8T= (2/g) Tr Tr 28T 

= (2/g) Tr rTr8r = (2/g) Tr T(r8rr) = O. (5.110) 

In order to study the necessary conditions that 811 = 0 when 
r 2 = r, we will multiply the second relation (5.108) by an 
operator A --corresponding to the ordinary Lagrangian 
multipliers-and take the trace, which gives the auxiliary 
condition 

Tr Ar8rr = Tr(rAr)8A = O. (5.111 ) 

Combining (5.109) and (5.111), one obtains the relation 

811 = (l/g)Tr(Tr+rT-rAr)8r=0 (5.112) 

for arbitrary variations 8r, which leads to the condition 

Tr+ rT- rAr= o. (5.113) 
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MUltiplying this relation to the left by r and to the right by 
r, respectively, one obtains 

rTr+ rT= rAr= Tr+ rTr, (5.114) 

i.e., 

Tr=rT, (5.115) 

which is hence a necessary and sufficient condition that 
811 = 0 when r 2 = r. This result implies that r must be a 
projector 0, which decomposes the operator T. 

The relation (5.115) connects the bivariational principle 
811 = 0 with the stability problem for the operator T, and we 
will now look for approximate solutions. Let us assume that, 

as in Sec. 3, we have two truncated sets If> = !¢I'¢2'''''¢m 1 
and l\J = ! l/;1,l/;2, .. ·,l/Jm 1 of order m at our disposal, and that 
the matrix (l\J I If» is nonsingular. According to (4.21), one 
can then construct a pair of adjoint projectors 

0= 11f» (l\JIIf» -I (l\JI, 

at = 1l\J)(If>Il\J)-I(If>I, 

(5.116) 

(5.117) 

where the bar indicates that we are dealing with approximate 
quantities. In order to study the degree of approximation, it 
may be convenient to introduce the difference 

(i) = TO - OT, 

since the quantity 

y = Tr {i)t (u;;;'O 

is then non-negative and zero only when the relation 

(5.118) 

(5.119) 

TO = OTis exactly fulfilled. We note that (5.119) is a gener­
alization of the ordinary concept of the "width" of an opera­
tor T. 

As before, we will now introduce the reciprocal set 
l\Jr = l\J(If>Il\J) -I having the property (l\Jr 11f» = (1f>1l\Jr) = 1, 
which gives 

(5.120) 

Assuming that the relations TO = aT and Tt a t = at Tt 
are exactly valid, one gets directly 

TIIf»(l\Jrl = 11f»(l\JrIT, 

Tt ll\Jr )(1f>1 = 11/Ir) (If> I Tt. 

(5.121) 

(5.122) 

Multiplying the first to the right by 11f» and the second to the 
right by 11/1,), respectively, and introducing the notation 
f = (1/1 r I T I If», one obtains 

(5.123) 

Here, R = (1f>ITtl\Jr) = (TIf>11/Ir) = f t , as before. Intro­
ducing the matrix y which brings f to classical canonical 
form X, one obtains 

y Ify = X, ytft (yt t 1 = Xt , (5.124) 

and introducing the approximate eigenbases e = If>y and 
0= l\Jr(yt )-1, one obtains the approximate relations 

1C = eX, Tto = oXt. (5.125) 

I t is then easily checked that the other fundamental relations 
in Sec. 3 are also valid. 

We observe finally that the transformation off and ft 
to classical canonical form corresponds to the decomposi­
tion of the projectors a and a t into irreducible projectors 
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Ok decomposing the two operators, so that 

0= IOb ot = Ior. (5.126) 
k k 

At this stage, one can check the accuracy of each projector 
Ok by forming the commutators 

Wk = TOk - Ok T, (5.127) 

and by evaluating the quantities 

Yk = Tr W!Wk ;>0. (5.128) 

It should be observed, however, that-even if this scheme is 
also approximate-it has the great advantage that the ap­
proximate solutions have essentially the same properties as 
the exact ones. In certain connections, it may perhaps be 
more appropriate to consider the approximate operators 

r=OTO= 11\»(ljJr ITII\»(ljJr I 
= II\»f(ljJr I, 

rt = ot TtOt = IljJr) (1\>1 Tt IljJr) (1\>1 
= IljJ, )Tt (1\>1, 

which satisfy the relations 

OT= TO, otrt = rtot 

(5.129) 

(5.130) 

(5.131) 

exactly. This means that the approximate solutions for the 
operators T and Tt previously obtained may be considered 
as exact solutions associated with the operators rand rt . 

6. COMPLEX CONJUGATE OPERATORS 

In this section, we will consider certain aspects which 
may be important in the numerical treatment of general lin­
ear operators T. Let us consider a linear space A = l x] , 
where the elements x represent certain complex functions of 
some specified variables, and let the symbol x* represent the 
complex conjugate function. Such a space is said to be stable 
under complex conjugation if both x and x* belong to the 
space. 

Let us assume that A = ! x] has a basis 
X = !X,,x2, ... ,xn ] of finite order n, and that every element 
x may be expressed in the form 

x = IXka k = Xa. 
k 

This gives directly 

x* = X*a* = Xa', 

(6.1) 

(6.2) 

where X* = (XT ,xT, ... ,x!) is the complex conjugate basis, 
which may be expressed in terms of the original basis X, so 
that 

X* = Xu, X = X*u-'. (6.3) 

This is a rather special type of linear transformation, since 
one gets directly X* = X( u - '), i.e., 

u = (u*)-', u*u = 1. (6.4) 

Since lul*lul = 1, the absolute value of the determinant lui 
is hence 1. Combining (6.2) and (6.4), one gets further 

a' = ua*. (6.5) 

A somewhat different way of approaching this problem 
is to use the identity 
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X = !(X + X*) + !(X - X*) = <1>, + i<l>2' (6.6) 

and to consider the set! <1>,,<1>2] having the elements 

<1>, = !(X + X*), <1>2 = (l/2i)(X - X*), (6.7) 

with the property <l>T = <1>" <l>T = <1>2' Starting with the first 
element in the set! <1>,,<1>2] and leaving out all elements 
which are either vanishing or linear combinations of the pre­
ceding elements, one arrives at a sequence <I> oflinearly inde­
pendent elements which may serve as a basis. Since <I> = <1>*, 
one speaks of a real basis. 

I t is evident that, if the original space A = ! x] is stable 
under complex conjugation, this construction will not 
change the order of the space. On the other hand, if this is not 
the case, the sequence! <1>,,<1>2] contains twice as many ele­
ments as the original set X and, by introducing the new basis 
<1>, one may hence have increased the order of the space and 
extended the original space A = ! x] , so that the new space 
becomes stable under complex conjugation. Instead of (6.1) 
and (6.2), one gets the simpler relations 

x = <l>a, x* = <l>a*, (6.8) 

where the column vector a is different from the one occur­
ring in (6.1). Because of the property expressed by (6.8), the 
operation of "complex conjugation" is often described as 
antilinear. 

Irrespective of the properties of the basis, the complex 
conjugate operator T * is defined by the relation 

T*x = (Tx*)*. (6.9) 

Observing that, for the domain of T *, one has 
D (T *) = ! D (T) ] *, one gets directly the formulas 

(T,a, + Tp2)* = TTaT + TiaT, 

(T,T2)* = TTTT, (T*)* = T. 

(6.10) 

(6.11) 

We note that, because of the special form of the first relation 
(6.11), the complex conjugation is not an involution. In the 
case when the operator Tis expressed analytically in terms of 
real and imaginary quantities, one obtains the expression for 
T* simply by replacing the imaginary unitiby i* = - i. For 
instance, for the momentum operator in quantum mechan­
ics 

h a 
p=--, 

27Ti ax (6.12) 

onehasp*= -pas well aspt =p. 
For the matrix representation of T*, one gets directly, 

by using the definitions, 

T*<I> = (T<I»* = (<I>T)* = <l>T*. (6.13) 

From the relation y-'Ty = A, it follows also that 
(y*)-'T*y* = A *, where A * has the same classical canonical 
form as A with the eigenvalues Ak replaced by A t but with 
the l's of the Jordan block still above the diagonal. Since A t 
may be obtained from A * simply by permutating the basis 
elements of each Jordan block, the operators Tt and T* are 
apparently connected by a similarity transformation. We 
note finally that, if OT = TO, one has also 0 * T * = T *0 *, 
i.e., the projectors 0 * decompose the operator T*. 

In relativistic quantum theory, the complex conjuga­
tion is closely associated with the fundamental operation of 
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"charge conjugation" and time reversal, but we will study it 
here in a more elementary connection. 

Special case when Tt = T *. In the partitioning tech­
nique as well as in the complex-scaling method, there are 
many examples of operators having the special property 

Tt = T*, (6.14) 

which means that the similarity transformation in the gen­
eral case is replaced by an identity. From the eigenvalue 
problems TC = AC and Tt D = f-lD, one gets directly 
T*C * = A *C *, whichgivesD = C *forf-l = A *. In general, 
one has the property 

D = C* = C(qC)-I, (6.15) 

which is a special case of (6.3). The result implies that 

(qC)*(qC) = 1, (6.16) 

in accordance with (6.4), and the absolute value of the deter­
minant I (qC) I is then equal to 1. 

It should be observed that, if one has introduced a real 
basis ~ as well as its reciprocal basis ~r through the relation 

(6.17) 

with the properties (~I~r) = (~r I~) = 1, then also the re­
ciprocal basis ~r is real. One has then the matrix representa­
tions 

T~ = ~T, T*~ = ~T*, Tt ~r = ~r Tt , (6.18) 

where T = (~r I T~ J and Tt is its adjoint matrix. In the spe­
cial case when Tt = T *, it is convenient to introduce an 
orthonormal real basis, e.g., cP = ~(~I~) -1/2, satisfying the 
relations (cplcp) = 1 and CPr = cpo Using (6.18), one obtains 
Tt = T*, i.e., 

(6.19) 

and the matrix T is hence a symmetric matrix with complex 
elements. From the numerical point of view, this may be a 
simplification since one may have to store only the part of 
the matrix I Tkl l having k<J A symmetric matrix with real 
elements is self-adjoint, of course, and it may hence always 
be diagonalized. The same is true for a symmetric matrix 
with complex elements, if the eigenvalues Ak are distinct. It 
should be observed, however, that-in the case of degenerate 
eigenvalues-it is necessary to apply the full theory of the 
linear operators and the description of the degeneracy in 
terms of Jordan blocks and Segre characteristics. 

7. CONCLUDING REMARKS 

In this paper we have concentrated our interest in the 
study of the stability problem for a pair of adjoint operators 
on such problems which are simple to hand and which may 
still lead to a deeper understanding of the more complicated 
general ones. It should be remembered, however, that even 
in these simple cases there is still a great deal of work to be 
done from the point of view of numerical analysis and actual 
computations. Most of our attention has, so far, been devot­
ed to the study of the classical canonical form of operators 
defined of finite linear spaces and the associated projectors. 

The treatment of general linear operators on an infinite 
space is a difficult problem and, even if many important re-
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sults have been obtained by the mathematicians,7 most of 
them are rather technical in nature and are hard to handle in 
the practical applications carried out by theoretical physi­
cists and quantum chemists. Hence it seems desirable to go 
over these problems also from the practical point of view. 

It should be observed that there is at least one series of 
results in this paper, which are easily generalized also to 
infinite spaces and which have already been successfully ap­
plied, in the treatment of the "constants ofmotion."s This 
depends on the fact that some of the results in Sec. 5, which 
were based on the reduced Cayley-Hamilton equation (5.86) 
to construct a resolution of the identity (5.78) in terms of 
product projection operators (5.79), may be applied also to 
infinite spaces as long as the number of eigenvalues Ak stays 
finite and each one of them has a finite minimal index mk 

corresponding to the largest Segre characteristic. In such a 
case, the product projection operators 0 ~1) split the Hilbert 
space into a finite number of stable subspaces Vk --each one 
of infini te order g k = 00. 

If the number of eigenvalues Ak in the complex plane 
becomes infinite, the spectrum may become very complicat­
ed and may contain several continuous portions. However, 
as long as the minimal indices m k remain finite, the problem 
can be handled at least in principle. Of course, one has con­
vergence problems in treating the infinite products associat­
ed with FI (z) and 0 ~)(z), but these can be overcome by intro­
ducing the same convergence factors as occur in Weierstrass' 
and Mittag-Leffler's theorems about integer analytic func­
tions. So far, little research has been done in this area. 

In constructing the meromorphic function 1/FI (z) hav­
ing poles of order m k in the points z = Ak , one may again 
obtain some guidance from the case of a finite space. Starting 
from the generalized spectral resolution T = IC)A(DI ex­
pressed by the first relation (5.104), one obtains the following 
resolution of the resolvent: 

(7.1 ) 

where A is the classical canonical form which is block-dia­
gonalized in terms of Jordan blocks of the type (5.36). Con­
sidering a specific diagonal block of the matrix (z·1 - A) of 
order mk associated with the eigenvalue Ak , one obtains by 
using the matrices in Appendix A, Eq. (A2) 

(z·1 - Ak ·l - jtl- I = [(z - Ak ).1 _ j1J- 1 

= (z - Ak )-1.1 + (z - Ak )-2jl 

+ (z - Ak r- 3j2 + ... + (z - Ak )- m'in, _ I' (7.2) 

i.e., a finite expression containing exactly mk terms. Taking 
two arbitrary elements ({! 1 and ({!2 of the Hilbert space, one 
may instead consider the auxiliary function 

«({!IIR 1({!2) = «({!II(z.l- T)- 1 1({!2) 

= «({!IIC)(z.1 - Ar 1 (DI({!2) (7.3) 

in the form of a binary product. In general this is a meromor­
phic function of the complex variable z with poles of the 
order mk in the points z = Ak , which relates it to the func­
tion 1/ FI (z). In such a case the coefficients of (z - A k )- P 

may be determined by carrying out the limiting procedure 
Z--+Ak properly. In practice, it may be easier to handle this 
problem by means of the partitioning technique, x which 
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from many points of view seems well suited also for handling 
the case of infinite spaces. This problem will be further treat­
ed in a forthcoming paper. 
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APPENDIX A: DERIVATION OF THE INVERSE OF A 
TRIANGULAR MATRIX OF A CERTAIN TYPE 

In studying the properties of a specific triangular ma­
trix.c1 of the form (5.64) having the properties 

Llkl = O. for k>/ + 1, 

Llkl = tk -I. for k,;;,J. (AI) 

it is convenient to introduce the sequence of matrices of or­
derm: 

o 0 0 0 o 
o 0 0 0 o 0 

o 0 

o 0 
o 

o jl = 0 0 0 1 0 

o 0 0 0 o 0 0 0 

o 0 
o 0 
o 0 

o 
o 

o 

o (A2) 

where jp consists of a diagonal of l's p steps above the main 
diagonal. One has directly the connections 

Y: =jp. for p<,m - 1. j~ = O. (A3) 

Starting from (5.64). one obtains the expansion 
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.c1 = to·1 + CI·jl + t-2.h + ... + t -Im-I)jm-I. (A4) 

and this gives for the inverse 

d = .c1- 1 = to I{I + 'J> _k/tO)j/}-1 

= t 0- I{ 1+ 11\ - 1)1 [tll(t - k/tO)j/ II (A5) 

It is evident that the last expression may be rearranged into 
powers of the matrix j I' and hence this gives an expansion of 
the form 

d = do·1 + d_l·jl + d-~2 + ... + d _ 1m _ I)jm _ I' (A6) 

This means that d is also a triangular matrix having the pro­
perties 

d kl = 0, for k>/ + 1, 

dkl=dk _ l • fork";)' (A7) 

Once this result is established. it may be simpler to get the 
coefficients d _ p recursively by using the relation d.c1 = 1. 
i.e., 

1= d.c1 = doto·l + (d_Ito + doC tljl 

+ (d_ 2to + d_IC I + dOC 2 )j2 + .... 
which gives 

doto = I. 

d_Ito+dot_1 =0. 

d_2to + d_It_1 + dOC 2 = O. 

(AS) 

(A9) 

The essential property of the inverse d = .c1- I used in Sec. 5 
is given by relation (A 7). 

'See, e.g., P. O. Lowdin, Int. J. Quantum Chern. 12, 197 (1977), particularly 
p.235. 

2See, e.g., P. O. Lowdin, Advances in Quantum Chemistry (Academic, New 
York, 1980), Vol. 12, p. 263 (particularly pp. 298-306); Phys. Scripta 21, 
229 (1980). 

'For general references on "complex scaling," see special workshop issue in 
Int. J. Quantum Chern. 14, 343-542 (1978). 

'E. A. Hylleraas and B. Undheim, Z. Phys. 65, 759 (1930). 
'Po O. LOwdin, Phys. Rev. 27,1509 (1955); Rev. Mod. Phys. 34, 80(1962); 
34,520 (J.962); 36, 966 (1964). 

6p. O. Lowdin, Int. J. Quantum Chern. 12,197 (1977); 21, 275 (1982). 
7See, e.g., N. Dunford and J. T. Schwartz, Linear Operators, Part III (Wi­
ley-Interscience, New York, 1971). 

'See Ref. 2. 
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A generalization of the Hartree-Fock scheme for an arbitrary linear operator-and its adjoint­
is derived by using the bivariational principle. It is shown that, if the system operator in the 
transition value is approximated by two Slater determinants, it is determined by a projector p, 
which corresponds to a generalization of the conventional Fock-Dirac density matrix, but which 
is no longer self-adjoint. The effective one-particle operator then takes the same form as in the 
conventional theory. The solution of the stability problem for a pair of adjoint effective operators 
is finally discussed. Numerical applications are performed elsewhere. 

PACS numbers: 03.65. - w 

1. INTRODUCTION 

In the quantum theory of matter, the Hartree-Fock 
scheme corresponding to the independent-particle model is 
one of the standard methods for deriving approximate eigen­
functions and eigenvalues to self-adjoint operators-par­
ticularly to the Hamiltonian. During the last decades, there 
has also been an increasing interest in general linear opera­
tors T -defined on a Hilbert space ~ = {I J having a binary 
product (/Ig)-which are neither self-adjoint nor normal. 
They are of interest as a mathematical tool in the theory as 
well as in the physical applications, for instance, in the par­
tioning technique' or in the complex scaling method. 2 

Such an operator T having the domain D (T) has an ad­
joint Tt -with the domain D( Tt )-defined through the re­
lation 

(/ITg) = (TYlg) (1.1) 

for every pair (J, g) belonging to the proper domains D (Tt ) 
and D (T), respectively. The stability problem for such a pair 
of adjoint operators-T and Tt -has been discussed in an­
other paper.3 For the sake of simplicity, we will here concen­
trate our interest on the eigenvalue problem, which takes the 
form 

TCk = AkCk, TtD, = Il,D" (1.2) 

where Il, = A r. According to the general theory, one has 
further the biorthogonality theorem: (D, I C k) = 0 for 
Il, of A t, which may be combined with a normalization con­
dition (Dk I Ck ) = 1 to the biorthonormality relation 

(D,ICk)=O'k' (1.3) 

The question is now whether the Hartree-Fock method may 
be extended also to a general linear many-particle operator T 
of the form 

(1.4) 

i.e., whether one can approximate the eigenfunctions Ck and 
D, in (1.2) by single Slater determinants built up from one­
particle functions or spin orbitals in a meaningful way. In 
connection with the complex-scaling method, one of us 
(P.F.) worked out a spin-orbital treatment of this problem 

based on the bivariational principle. However, once the solu­
tion was found, it turned out that a much simpler and more 
transparent derivation could be obtained in terms of density 
matrices. Only this derivation will be described here. 

2. OPERATORS TWITH DISTINCT PURE POINT 
SPECTRA 

The bivariational principle 

In the study of general linear operators T, the bivaria­
tion principle3 plays a fundamental role. One starts by con­
sidering a so-called "transition value": 

(2.1) 

where <1>, and <1>2 are arbitrary trial wave functions having 
the property (<1>21 <1> 1) of O. In Dirac's nomenclature,4 the bi­
nary product or the bracket (I Ig) is the product of a bra­
vector (II and a ket-vector Ig). In the following, we will 
often use ket-bra operators OJ = Ig) (I I defined through the 
relations 

OJ = Ig) (II, OJh = g(/lh ), (2.2) 

for all elements h in S). They satisfy the reduced characteris­
tic equation OJ [OJ - (/Ig) . 1] = 0, and they have the proper­
ties 

OJt = 1/)(gl, TrOJ = (/Ig)· (2.3) 

For the system operator r in (2.1), one obtains in this formal­
ism the explicit expression 

(2.4) 

It is then evident that the operator r has the properties 

r 2 =r,Trr=l,rofr t
, (2.5) 

i.e., r is a one-dimensional projector which is not self-ad­
joint unless <1>, and <1>2 are proportional, i.e., are related by a 
complex constant. The ranges of rand rt are the one-di­
mensionallinear manifolds [<1>1 • a J and [ <1>2 • f31, respec­
tively. 

The bivariational principle3 says that the first-order 
variation of the transition value (2.1) is vanishing: 
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(2.6) 

if (/>1 and (/>z are varied around the eigenfunctions Ck and 
Dk , and vice versa, which means that the relation (2.6) is 
equivalent to the two eigenvalue relations (1.2). In the more 
general case-also including degenerate eigenvalues-the 
bivariational principle (2.6)is equivalent to the commutation 
relation 

Tr=rT, (2.7) 

where r is a projector of the same order as the degeneracy. 
For the sake of simplicity, we will consider here only nonde­
generate eigenvalues. 

Construction of the system operator r from Slater 
determinants 

In the Hartree--Fock scheme, the trial functions (/>1 and 
(/>z are assumed to be single Slater determinants built up 
from one-particle functions, i.e., 

(/>I(X) = (N!)-I/ZI7fk(X;)I, 
(2.8) 

4>z(X) = (N!)-I/Zlq:J,(xj)l, 

where X = (XI' x2' ••• 'XN) and x; = (r;.;;) is the combined 
space-spin coordinate of the ith particle, whereas the indices 
i andj go from 1 to N. The determinants are built from linear­
ly independent one-particle functions or spinorbitals: 

lJI = [7fd = [7fI' 7f2'" ·,7fN ], 
(2.9) 

<p = [q:J,l = [q:Jl' q:J2" . ·,q:JN], 

where the indices k and I go from 1 to N. The two sets lJI and 
<p span the linear manifolds.AI '" and.AI 'P' respectively. We 
note that, if the sets lJI and <p undergo nonsingular linear 
transformations: 

lJI' = lJIu, <p' = <p13, (2.10) 

the determinants (2.8) are changed only by the constant fac­
tors lui and 1131, respectively, as in the ordinary Hartree­
Fock scheme. 

The derivations in the following follow closely similar 
derivations given by one of the authors in a study of the 
ordinary Hartree-Fock scheme formulated in terms of den­
sity matrices. 5 One of the key quantities in the bivariational 
principle is the overlap integral «(/>21 (/> I) between the Slater 
determinants (2.8). Using the anti symmetric projector 

OAS = _1_ I( - 1)PP, 
N! p 

(2.11) 

having the properties O~s = OAS and O~s = 0AS' and in­
troducing the overlap integral 

d'k = (q:J,l7fk) = Iq:Jr(xtl7fdxtldx" 

one obtains in the standard way 

(2.12) 

«(/>21(/>1) = (N!)(OAsCPI(xtl··· CPN(xN)I OAS7fI(Xtl··· 7fN(XN ) 

= (N !)(cp dx I)' .. cp N(X N) I ° AS I 7f, (x I)' . '7fN(X N) 

= +( - lIP I q:J f(x.) ... 
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x cP t(x N )Px 7f,(x,) . . '7f N(X N )dx " . ·dx N 

= +( - I)P I q:J f(x l )· •• 

XcP t(xN)P k-'7fk, (x,)·· ·7fkJxN )dx, .. ·dxN 

= I( - 1)P P k- l (q:J,i7fk, )(CPzl7fk)" '(q:JNi7fk
N 
> 

p 

= I( - lIP P k- Id lk ,d2k," ·dNkN = Id'k 1= Idl, 
p 

(2.13) 

where Idl is the determinant of the overlap matrix d = I d'k j. 
Here and in the following, we will use the same notation ( I ) 
for the binary product in the N -particle space and in the one­
particle space, if there is no risk of misunderstanding. One 
should only remember that the symbol ( I ) indicates that 
one should integrate over the space coordinates and sum 
over the spin coordinates. 

Since the bivariational principle requests the condition 
«(/>21 (/> I) = I d I =I 0, the matrix d must be nonsingular. We 
note that this condition is fulfilled provided that there is no 
element in M<p (except the zero element) which is orthogonal 
to the entire space M",. 3 

Using the law of determinant multiplication, 
IA.BI = IAI·IBI and Iq-' = IC-II,onecannoweasily 
find an expression for the system operator r defined by (2.4) 
and (2.8): 

r= /(/>1) «(/>zl = _1 IllJI)I'I(<p11 
«(/>21(/>1) N! Idl 

= ~! IllJI)I'ld-'II(<p11 

I I 
= N! I IlJI)d-'(<p1 I = N! Ip I, (2.14) 

where 

(2.15) 

This operator derivation in terms of "bold symbols" is very 
short and condensed-perhaps too condensed. If one instead 
considers the associated kernel or "density matrix" r (X IX ') 
one obtains similarly 

(/>1 (X )(/> T(X ') 
r(XIX')= ---­

«(/>21(/>,) 

where 

1 l7fdx,)I' Icp r(x;J1 

N! Idl 

= ~! l7fdx ;)I'I(d-
1
h,I'lcpr(x;J1 

= ~! I k.~ 1 7fdx;)(d-
l
)k'CP r(x;J I 

~! Ip(x;, x;Jl, 

N 

pix;. x;J = I 7fdx; )(d-l)k,q:J r(x;J 
k,'~ 1 

(2.16) 

(2.17) 

is the kernel of the one-particle operator p defined by (2.15). 
Using (2.15) and the fact that (<pllJl) = d, one gets immedi-
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ately the relations 

p 2 =p, Trp=N, p=/=pt. (2.18) 

It is evident that p and p t are projectors defined on the one­
particle Hilbert space dY'1 having the ranges My, and M<p' 
respectively. Writing (2.15) and its adjoint in the form 

p = I"'>('PI",>-I('PI, 
pt = I'P>("'I'P>-I("'I, 

(2.19) 

(2.20) 

it is clear that the operators p and p t are N-dimensional 
projectors of a general type discussed in a previous paper. 3 If 
the basic sets'" and 'P undergo nonsingular linear transfor­
mations according to (2.10), these projectors stay invariant: 

p'=p, (pt)'=pt. (2.21) 

Everything is hence essentially the same as in the ordinary 
Hartree-Fock scheme, except that the projector p is no long­
er self-adjoint. 

As in the conventional theory,S it is now possible to 
derive the reduced density matrices r(x

" 
x 2 , •• • ,xp I 

x;, x;, .. . ,x~) oflower order by successive trace formation: 

x~,xp + I' ... ,xv)dxp + I ... dxN · (2.22) 

Starting from the density matrix of order N given by (2.16), 
i.e., 

= (l/N!)lp(x i , x; )1, (2.23) 

expanding the determinant of order N in the right-hand 
member after its last column, putting x;" = x N , integrating 
over x N , using (2.18), and multiplying by the factor N ac­
cording to (2.22), one obtains the reduced density matrix of 
order (N - 1). Repeating this procedure according to for­
mula (2.22), one gets for the reduced density matrix of order 
p 

F(x l , .. . ,xp Ix;, .. . ,x;) = ~lp(Xi' xj)l, (2.24) 
p. 

where the determinant is of order p and the indices i andj go 
from 1 to p. For p = 2, one gets particularly 

" 1 \P(XI,X;) p(xl,x;) \ 
r(X I,x2 Ix IX2 )=- , , 

2 p(x2, XI) P(X2' x 2 ) 

= ~(1 - Pdp(x
" 

x;)P(x2, x;), (2.25) 

where P12 is the exchange operator which changes x I into x 2 

andx2 intox
" 

sothatP12!(x
"

x2) =!(x2,xl ). Forp = 1, one 
gets finally 

r(xllx;) = p(x l, x;). (2.26) 

All the reduced density matrices are hence determined by 
the one-particle projector p, and this fact renders a great 
simplification of the structure of the theory. 

Using (1.4) and the theory of reduced density matrices,5 
one gets further for the transition value (2.1) ofthe operator 
r 
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(T>12 = 1(01 + f T,r(x,lx;)dx, 

where 

+ f Tl2r(X,X2Ix;x;)dx , dx2 

= 1(01 + f T,p(x"x;)dx , 

+ ~ f 1".2P(x
" 

x; )P(x2, x;) dx , dx2, 

TI2 = Td1 - Pd· 

(2.27) 

(2.28) 

We have further used the standard convention that the oper­
ators T

" 
T12, T ,2, ••• work only on the unprimed coordi­

nates and that one puts xi = x I' x; = X 2 before the integra­
tion. 

Derivation of the bivariational Hartree-Fock equations 

In applying the bivariational principle (2.6), one should 
now vary the trial wave functions <PI' and <P2 defined by 
(2.8). This may be accomplished by varying the sets 
'" = I th ) and 'P = I (jJI) subject to the condition 
Idl = I ('PI"'> I =/=0, or simply by varying the associated den­
sity operator p given by (2.15) which satisfies automatically 
the conditions p2 = p, Tr p = N according to (2.18). For the 
variations 0 p this gives the auxiliary conditions 

o p = pop + 0 P . p; Tr (0 p) = o. (2.29) 

Multiplying the first relation on the left (or on the right) by p, 
one obtains directly 

p .op ·p=O, (2.30) 

which means that the projection of 0 p within the subspace of 
p must necessarily be vanishing. This implies also that the 
second relation (2.29) follows from the first, since one has 

Tr 0 p = Tr (p . 0 p + 0 P . p) 

= Tr( p2 . 0 P + 0 P . p2) 

= 2 Tr( p ·0 p . p) = o. (2.31) 

This could be expected, since the relationp = p2 implies that 
Tr p must be an integer which cannot be continuously 
changed from one value to another. Using (2.27), one now 
obtains 

o(T)I2= f T,op(x"x;)dx , 

where 

+ ~ fT.z[OP(X"x;)P(x 2, x;) 

+ p(x l , x;)o P (X2' x2l] dx , dX2 

= flT, + fT,2P(X2, x;) dX2)OP(XI,x;)dxl 

= f Teff(l)o p(x l , x; ),dx, = Tr Teffo P = 0, 

(2.32) 

Teff(l) = T, + f dx2T I2 P(x2, x;). (2.33) 

In the derivation, we have used the fact that the integra­
tion variables x I and X 2 are" dummy variables", the names of 
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which may be interchanged. We note that Tew(l) is an effec­
tive one-particle operator which depends only on p and which 
is hence invariant under the linear transformations (2.10). So 
far, everything is analogous with the conventional Hartree­
Fock theory,5 except that-since p#pt -the effective one­
particle operator Tew (I) is no longer self-adjoint: 

Tew(1)#T!w(I). (2.34) 

Let us now study the meaning of the relation 

o(T)12 = Tr Telfop = O. 

Using (2.29) and (2.30), one obtains 

p.op·p=O, (l-p)·op.(I-p)=O, 

(2.35) 

(2.36) 

which means that 0 p has vanishing components in the sub­
spaces defined by the projectors p and p' = I - p, respec­
tively.1t is hence convenient to study a variation of the form 

op = (l-p)AIP +pA2(I-p), (2.37) 

where A I and A2 are two general linear variational opera­
tors, which can be made arbitrarily small. It is interesting to 
observe that, in this case, the two relations (2.29) are automa­
tically fulfilled, i.e., one has 

pop + 0 P . P = 0 p, Tr 0 p = 0, (2.38) 

and that (2.37) is obviously the most general form one can 
give the variation 0 p. Substituting (2.37) into (2.35), 06e ob­
tains directly 

Tr Tewo P = Tr! Tew(1 - p)A I P 

+ TewpA2(1 - pll 

= Tr!p Tew(1 - p)A 1+ (1 - p) TewpA 2 I = 0, 

(2.39) 

for arbitrary variational operators A I and A 2' Such a relation 
is valid if and only if 

i.e., 

pTeW = pTeWP' TelfP = pTelfP, 

which implies that 

TewP = pTelf · 

(2.40) 

(2.41) 

(2.42) 

This relation is hence the necessary and sufficient condition 
for the fulfillment of the variational principle in determinan­
tal approximation. This condition implies that the projector 
p decomposes the effective operator TeW but, since this oper­
ator according to (2.33) depends onp, one is evidently faced 
with a nonlinear problem. Taking the adjoint of the operator 
relation (2.42), one obtains further 

pt TJw = TJlfpt, (2.43) 

which means that the adjoint projector p t reduces the ad­
joint effective operator T!If' 

For the projectors p and p t , we will now use the expres­
sions (2.19) and (2.20). Observing that p'" = '" and p t cp = cp, 
one may now write the relations (2.42) and (2.43) in the form 

Telf", =pTew'" = 1",)(cpl",)-I(cpITelfl"'), (2.44) 

TJlfcp = P t T!lfCP = Icp) ('" Icp) - 1(", I TJw Icp). (2.45) 
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Introducing the notations 

hi = (cpl",)-I(cpITelfl"'), 

h2 = ("'Icp) -I( "'I TJw Icp), 

(2.46) 

(2.47) 

one may hence write the conditions for the fulfillment of the 
bivariational principle (2.6) in the special form 

Telf", = ",hi, T!wCP = cph2· (2.48) 

They are generalizations of the conventional Hartree-Fock 
equations, where hi and h2 are the matrices formed by the 
"Lagrangian multipliers". They represent, of course, the sta­
bility relations indicating that the sets", and cp are stable 
under the operators Telf and T!w, respectively. 

Structure of the Hartree-Fock equations 

It is evident from the derivation that, if the two relations 
(2.48) are to have any meaning, it is necessary to treat the two 
operators Telf and TJw independently of each other. In this 
subsection we will show, however, that there is still a certain 
coupling between the two equations and their solutions. 

Let us first start by considering the first relation (2.48). 
According to elementary matrix theory, there always exists 
a similarity transformation SI which will bring the matrix hi 
to classical canonical form AI: 

Sl- Ihl SI = AI' hi = SI Al SI- I. (2.49) 

Introducing the canonical spin orbitals "" through the trans­
formation 

(2.50) 

one gets directly Telf ",' = Telf", Sl = '" hi SI = "" SI- Ihl SI 
="" AI,i.e., 

(2.51) 

which is a generalization of the canonical Hartree-Fock 
equations. It is important to observe that Tew is invariant 
under the transformation (2.50). If the diagonal elements in 
Al are distinct, the classical canonical form is necessarily 
diagonal, but-if they are degenerate-there may be Jordan 
blocks of order m = 2 and higher which are ultimately de­
scribed by the so-called Segre characteristics, depending on 
the fact that the operator Tew is neither self-adjoint nor nor­
mal. 

According to (2.46)-(2.49), one gets for the matrix h2 

h2 = ("'lcp)-I("'IT!lflcp) 
= ("'Icp) -I (Telf"'lcp) 
= ("'Icp)-I(", hllcp) 

= ("'Icp) -lhT ("'Icp) 

= ("'Icp) -1(StJ- I AT sT ("'Icp), (2.52) 

and this implies that h2 may be brought to the special form 
A t by means of a similarity transformation: 

S2 = ("'Icp) -1(StJ- I = ! sT ("'Icp) I -I = (",'Icp) -I. 
(2.53) 

It should be observed that AT is not a proper classical canoni­
cal form-since it consists of Jordan blocks of so-called sec­
ond type-but that it can be brought to such a form by per­
muting the basic elements associated with each Jordan 
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block. However, for our purpose, the special form J... t is more 
convenient. Introducing the functions 

CJ!' = CJ!S2 = CJ!(l/JICJ!)-I(sfj-l, 

the second relation (2.48) takes the form 

T:ffCJ!' = CJ!'J...~. 

This also leads to the relation 

(CJ!'W) = sI (CJ!Il/J)sl 
= sl-I(CJ!Il/J)-I(CJ!Il/J) Sl = 1, 

(2.54) 

(2.55) 

(2.56) 

which shows that the "canonical"solutions CJ!' and l/J' are 
automatically going to be biorthonormal once Sl has been 
evaluated and S2 has been determined through the relation 
(2.53). 

3. SOLUTION OF THE HARTREE-FOCK EQUATIONS BY 
MEANS OF EXPANSION METHODS 

In the self-adjoint case, the Hartree-Fock equations are 
often conveniently solved by expansion methods. 6 For the 
treatment of a pair of adjoint operators, Teff and T:ff , we will 
here use a generalization of a special technique developed 
previously for the conventional case.s 

Writing the Hartree-Fock equation (2.51) and (2.55) in 
the form 

(3.1) 

we observe that-even in the case of degenerate eigenval­
ues-they represent stability problems of the type treated in 
a previous paper. 3 According to the general theory, such 
stability problems are solved by looking for a pair of projec­
tors, Q and Qt , which decompose the operators Teff and 
T!ff' respectively, so that 

TeffQ = QTcff ' nffQt = Qt T:ff , (3.2) 

where the second relation is the adjoint of the first. Once 
such projectors are determined, they should further be de­
composed into irreducible components, which leads to a 
complete solution of the stability problem (3.1). The rela­
tions (3.2) are again equivalent with the bivariational princi­
ple (2.6) for the effective operators, and this fact is particular­
ly useful in deriving approximate solutions. 

In order to treat this problem in greater detail, we will 
now introduce two sets «I» = [<PI' <P2' .. ,,<PM land '11 = [ l/JI' 
l/J2' .. ·,tPM j, each consisting of M linearly independent ele­
ments, where N ~M. We will further assume that there is no 
element in the subspace spanned by '11 which is orthogonal to 
all the elements in «1», which means that the matrix 

(3.3) 

should be nonsingular. In principle, it should be possible to 
let M ---.. 00 , and to make the two sets «I» and '11 complete. 
Under such assumptions, there exists3 a pair of adjoint pro­
jectors 

Q= 1'11)(<<1»1'11)-1(<<1»1, (3.4) 

Qt = 1«1»)('111«1»)-1('111, (3.5) 

having the property Tr Q = Tr Q t = M. Forming the dif­
ference 

(3.6) 
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we realize that the quantity, 

y = Tr u/ UJ;;,O, (3.7) 

is nonnegative and zero only when UJ = 0, i.e., when Q de­
composes the operator Teff . The quantity (3.7), which is a 
generalization of the concept of the "width" of an operator, 
is hence a convenient measure of the degree of approxima­
tion introduced into the theory by the choice of the two sets 
«I» and '11. 

The two projectors (3.4) and (3.5) are, of course, invar­
iant under linear transformations of the type 

«1»' = «I»u, '11' = 'I1P, (3.8) 

where u and pare nonsingular matrices of order M X M. 
Introducing the reciprocal set 

«1», = «1»('111«1»)-1, 

which has the biorthonormality property 

('I1I«1»J = (<<1»,1'11) = 1, 

one gets particularly 

Q= 1'11)(<<1»,1, Qt = 1«1»,)('111. 

(3.9) 

(3.10) 

(3.11) 

We will now assume that the relations (3.2) are approximate­
ly valid for the projectors Q and Qt , so that 

or 

Tcff 1'11) ( «I» , I ~ 1'11) ( «I» , I Teff , 

T:ff 1«1»,) ('111;::; 1«1»,) ('111 T:ff · 

(3.12) 

(3.13) 

(3.14) 

Multiplying the first relation on the right by 1'11) and the 
second on the right by 1«1», I), one obtains 

Tcff '11 ~ '11 (<<I», I Teff 1'11) = '11 t I, 

nff«l»,;::;«I»,('I1lnffl«l»J = «1», t2, 

where tl = (<<1», I Teff 1'11) and t2 = ('111 T:ff 1«1»,) 
= (Teff '111 «1»,) = (<<I», I Teff '11) t = t~ . 

Hence, one has the approximate relations 

(3.15) 

(3.16) 

(3.17) 

which become exact only when the subspaces spanned by '11 
and «1», are stable under the operators Teff and T!ff' respec­
tively. A more detailed investigation shows, however, that 
these approximations may be justified by the bivariational 
principle, and we will return to this problem in a later sub­
section. 

In order to decompose the projector Q into its irreduci­
ble components, we will now transform the matrix tl of order 
M XM to classical canonical form AI by means of the simi­
larity transformation S I: 

SI-~ \ SI = AI' tl = SI AI Sl- I. 

Taking the adjoint relations, one obtains 

Si ti (si) I = At. ti = (Si) - IAi Si, 

(3.18) 

(3.19) 

which show that t2 = ti is transformed to pseudoclassical­
canonical form Ai by the similarity transformation 
S2 = (Si ) - I. Introducing the canonical orbitals 

'11' = '11 SI' «1»' = «I»,S2 = «1», (S;) ~~ I, (3.20) 
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one obtains 

Telf'll' = \fI' AI' nlfCf)' = Cf)' At. (3.21) 

We note also that the canonical orbitals have the biorthonor­
mality property 

(\fI'ICf)') = 1, (Cf)'I\fI') = 1. (3.22) 

This means that, for the projectors Q and Q t , one obtains the 
decompositions 

Q= 1\fI') (Cf)'1 
M M 

= L I cP ~) (~ ~ I = L Ok, 
k=1 k=1 

Qt = 1Cf)') (\fI'1 
M M 

= I I~~)(CP~I = I 01. 
k=1 k=1 

where the operators 

Ok = ICP~)(~~I, 

ot = I~~><CP~I 

(3.23) 

(3.24) 

(3.25) 

are one-dimensional projectors, which are (exactly or ap­
proximately) stable under the effective operators Telf and 
T!If' respectively, only when they are associated with dis­
tinct eigenvalues or with degenerate eigenvalues having sim­
ple Jordan blocks of order m = 1. If a Jordan block (J K) is of 
higher order, there are several indices k associated with the 
block, and one obtains instead for the irreducible projectors 
QK and Q t corresponding to the block 

(3.26) 

where one sums over all indices coupled to J K' Instead of 
(3.23) and (3.24), one obtains the following decompositions 
into irreducible projectors 

Q = I QK' Q t = L Q t, (3.27) 
K K 

where the summation goes over all Jordan blocks. 

Selection of the essential solutions 

So far, we have neglected the fact that the effective oper­
ator Telf according to (2.33) depends on the projector p: 

Telf (1) = TI + f dxz Tdl- Pdp(xz,xi), (3.28) 

which means that, in reality, one is dealing with a nonlinear 
problem. In conventional Hartree-Fock theory, this diffi­
culty is circumvented by the well-known self-consistent­
field (SCF) procedure which is an iterative procedure of the 
first order. Extending this approach to the more general case 
treated here, one would start from an initial approximation 
p(O) to the projector p. Solving the Hartree-Fock equations 
(3.1) for the associated effective operator T~OJ formed ac-

• . • (I) 
cording to (3.28), one then obtams a new approxlmatlOnp 
to the projector p which may serve as a new starting point. In 

. . f ., (0) (J) (Z) this way, one obtams a senes 0 apprOXlmatlOns p ,p ,p , 
p(3), ••• which are defined through the cycle 

PIn) ~ Tin) -+ pIn + I) 
'-~ elf /. (3.29) 
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Under favorable circumstances, this interaction procedure is 
convergent and leads to self-consistent solutions. It should 
be observed, however, that even if the process is divergent, it 
is often possible to use it to construct modified iteration pro­
cedures which are convergent. Similarly, one may often con­
vert slowly convergent procedures into rapidly convergent 
ones. 

There is one problem in this procedure which should 
now be discussed in greater detail. In solving the Hartree­
Fock equations (3.21), one obtains a total of M canonical 
solutions, \fI' and Cf)', which then should be divided into two 
groups: the N essential spin orbitals \fI;ss and Cf);ss entering 
into the next approximation of the projectors p and p t to be 
denoted by q and q', respectively, 

q = 1\fI;ss)(Cf);ssI, qt = 1Cf);'s) (\fI; .. I, (3.30) 

and the (M-N) virtual spin orbitals, which have no direct 
physical significance but which may still be mathematically 
useful in the treatment of the original eigenvalue problem 
(1.2). 

In the conventional Hartree-Fock method for studying the 
ground state of an atomic, molecular, or solid-state system, 
one intuitively selects the essential spin orbitals by taking the 
canonical solutions associated with the lowest one-particle 
energies. Even if this is physically reasonable and corre­
sponds to the famous "Aufbau-principle," there is-as far as 
we know-no mathematical proof that this is the correct 
way to carry out the iteration procedure. 

In the general case, the situation is more complicated­
partly due to the fact that the one-particle eigenvalues may 
now be complex and without special ordering. In this case, 
however, our problem is more mathematical than physical, 
and we may concentrate our interest on the iteration cycle 
(3.29). 

Starting from the projector pIn) and its adjoint, we will 
now consider the nth step of(3.29) where the solution of the 
Hartree-Fock equations (3.21) leads to the canonical solu­
tions 

\fI'(n+l) = 1¢~(n+I)J, Cf),(n+l) = I~:(n+l)l (3.31) 

for Il, v = 1,2,3, ... ,M. For the sake of brevity, we will in the 
following leave out the supers«ripts nand (n + 1), if there is 
no risk for misunderstanding. It is now convenient to consid­
er a canonical solution cP ~ as essential if it is mainly situated 
within the subspace of p so that-at least approximate1y­
one has 

(3.32) 

If, on the other hand, the solution cP ~ is mainly situated 
outside the subspace ofp, so thatpCP ~ ::::0, the solution cP ~ is 
considered as virtual. In the physical interpretation of this 
scheme, the essential spin orbitals are considered as occu­
pied by particles, whereas the virtual spin orbitals are unoc­
cupied. In order to treat this classification systematically, 
one may study the numbers 

mp = 11(1 - p)CP~ liZ 
= (CP~ll_p_pt +ptp ICP~»O, (3.33) 

for Il = 1, 2, 3, ... ,M and normalized solutions cP ~. The in-
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dices k for the essential solutions are then found by selecting 
the N smallest numbers out of the sequence m = I m I' 
m 2, .•• ,mM ), where one should also remember the rule that 
solutions associated with the same Jordan block should al­
ways belong together. If anyone of these numbers is vanish­
ing, the relation (3.32) is-of course--4!xactly fulfilled. Once 
an essential solution IJI ~ has been determined, the associated 
solution $ ~ is automatically given by the pairing condition 
contained in the biorthonormality relation (2.56), or 

(3.34) 

since there is only one solution $ ; which is not orthogonal to 
IJI ~. Using the essential solutions, one can now form the new 
projectors q and qt of order (n + 1) according to (3.30), and 
repeat the entire procedure. The iteration process becomes 
self-consistent whenever the new projectors of order (n + 1) 
agree within the accuracy desired with the old projectors of 
order n, and the process has become convergent whenever 
q = p. In such a case, the trivial relations 

(3.35) 

will imply the existence of the relations p'l1;ss = 'I';S5 and 
p t 4»;ss = 4»;", or 

plJl£ = IJI~, pt $ £ = $ ~ (3.36) 

for all the essential solutions. Conversely, the existence of 
the two relations (3.36) indicate that q = p and that the iter­
ation process has converged. 

The proof for this statement is based on the fact that by 
combining (3.30), (3.35), and (3.36) one gets directly the oper­
ator relations 

(3.37) 

Considering the difference Ll = P - q, one gets further 
Ll 2 = p2 + q2 _ P q - qp = p _ q = Ll, i.e., Ll is an idempo­
tent which may be diagonalized having only the eigenvalues 
a and 1. However, since Tr Ll = 0, this implies that Ll = 0, 
i.e., that q = p. 

It is evident that it would be interesting to study the 
convergence properties of the iteration cycle (3.29) and par­
ticularly its connection with the numbers mf' defined by 
(3.33) and with other similar quantities in greater detail, but 
such studies are considered outside the framework of the 
present paper and will be reserved for later communications. 

Reformulation of the theory by means of the charge­
and bond-order matrix 

For the practical computer applications, it is conven­
ient to reformulate the theory in a slightly different form. As 
before, we will start from two linearly independent sets 'I' 
and 4» of order M, and we will further use the reciprocal set 
4»r = 4»('111<1») - I characterized by the relations (3.9) and 
(3.10). Let us now introduce the two sets of essential canoni­
cal solutions to the Hartree-Fock equations (3.21) through 
the formulas 

"" = 'l'c, cp' = <l»A (3.38) 

where C and d are rectangular matrices of order M XN. 
Because of the biorthonormality property (3.22), one has 

(cp'I"") = dt (4)>r 1'I1)c = dt c = 1, (3.39) 
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where the right-hand member is a unit matrix of order 
N X N. For the projector p, one gets further 

p = 1"")(cp'I",')-I(cp'l = I"") (cp'l 

= 1'I1)c d t (4)>r I = 1 '11) R(4)>r I, 

where 

R =cdt 

(3.40) 

(3.41) 

is a matrix of order N X N, which is a generalization of the 
well-known charge- and bond-order matrix. 7 Since dt c = 1, 
it is evident that it satisfies the relations 

(3.42) 

i.e., that R is an idempotent matrix of order N. Since R is the 
representation of p in the bases chosen, it will sometimes be 
referred to as the projector matrix. 

It is now easy to express the effective one-particle oper­
ator Teff(l) defined by (2.33) in terms of the matrix R. Using 
(3.40), one gets directly 

Teff(l)= TI + J dx2T I2P(X2,X;) 

= TI + J dx 2T J2 I'11(x2 )R(4»r(x;)1 

= TI + I Rd dx2$ ~A (x2)TI2 IJIK (X2), (3.43) 
KA 

where TJ2 = Tdl - PI2)' In accordance with (3.17) thema­
trix t which forms the starting point for the block-diagonali­
zation procedure (3.18) is then given by the expression 

t = (4)>r( 1) 1 Teff ( 1 )1'I1( 1), (3.44) 

and hence it has the matrix elements 

t'll = (vi Teff(I)lfl), 

= J $ ~ ,(x dTeff ( 1)$1' (xl)dx I 

= (vITllfl) + IRd (VA ITdfl K) 
l', A 

= (vITllfl) + IRK.d(vA I TdflK ) 
K,f' 

- (VA ITlzIKfl)L (3.45) 

w here the indices V and A refer to functions out of the set 4» r' 

and the indices fl and K to functions out of the set '1'. When 
one block-diagonalizes the matrix t by means of the similar­
ity transformation S, so that 

S- It S = A, t S = S A, (3.46) 

one gets, of course, M solutions to the stability problem ex­
pressed by the second relation (3.46) and they are represent­
ed by the M column vectors Ck of the matrix S. The essential 
solutions are then given by the vectors Ck satisfying--4!xactly 
or approximately-the relation 

RCk =ck , (3.47) 

analogous to (3.32), and the N essential solutions Ck form 
then the rectangular matrix c of order M X N. According to 
(3.19), the matrix tt is further block-diagonalized by the si­
milarity transformation S2 = (SI- I)t, and the M solutions d l 

to the stability problem of e are then given by the column 
vectors of S2' To every vector Ck there is one and only one 
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vector dk having the property 

d!ck = 1. (3.48) 

since all the other vectors dl are automatically orthogonal to 
ck • The N vectors dk associated with the essential solutions 
Ck then form the rectangular matrix d of order M XN. and 
one can then recompute the matrix R = cdt . This means 
that. instead of (3.29). one obtains the iteration cycle 

R---+t---+S and S-I---+e and d---+R = cdt • (3.49) 
~ ~ 

which forms the basis for the computational procedure. 
In this scheme. the matrix t is evaluated from R by using 

formula (3.45) for the matrix elements. the similarity trans­
formation S may be found by using standard algebraic pro­
cedures for diagonalizing and block-diagonalizing matrices. 
whereas the essential solutions Ck and dk are selected accord­
ing to (3.47)-which is at least approximately fulfilled-and 
(3.48). respectively. 

It should be observed that the transformation matrix S 
is by no means unique. and that any nonsingular matrix S of 
the type 

S =f(t)S = Sf(A) (3.50) 

will also perform the block-diagonalization. For practical 
purposes. one may remember the rule that all the column 
vectors of S associated with one and the same Jordan block 
may be multiplied by the same constant. and that it may be 
convenient to choose this constant so that the first vector of 
the block becomes normalized to unity. The formula 
R = cdt is. of course. invariant under such a transforma­
tion. 

Evaluation of the transition value 

It now remains to evaluate the transition value (T) 12. 
which forms the basis for the bivariational principle. in 
terms of the matrix R. In applying formula (2.27). one should 
remember that the operators TI and 'lI2 = Td l - Pd 
work only on the unprimed coordinates x I and x 2 and that 
one has to putx; = XI andx; = X 2 before the integrations­
consisting of integrations over the space coordinates and 
summations over the spin coordinates-are carried out. In­
troducing the expression (3.40) for the projector pinto (2.27). 
one obtains 

95 

(T)I2= TID) + f TIP(xl.x;)dx l 

+ + f 'l12 P(x l • X; )P(x2• X;) dX I dX2 

= TID) + f TI'I'(x.)R4»~(x;) dX I 

+ + f 'l12!'I'(xl)R4»~(x; J 

X ! 'I'(x2)R4»~(x;) J dx I dX2 

= TID) + L RI',v (vITllfl) 
I',v 

= TID) + L RI',v(vITllfl) 
1', v 
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1 + - I I RdRI' v! (v A I Tnlfl K) 
2 1', v K,A 

- (vAITI2IKfl) J. (3.51) 

where we have used the same matrix notations as in (3.45). 
Using the expression (3.45). one obtains further 

I'v 
1 -

- - LLRl'vRd(VAITnlflK). (3.52) 
2 1''' KA 

where the last term occurs to compensate for the fact that all 
the two-particle interactions would otherwise be counted 
twice. For the second term one obtains. according to (3.41). 
(3.18). and (3,39). that 

LRl'vtvl' = Tr(tR) = Tr(tcdt ) 
I'v 

In) 

= Tr(c Adt ) = Tr(A dt c) = Tr A = IAk • (3.53) 
k 

W here one sums over the eigenvalues A k of all the essential 
solutions, This gives the expression 

N 

(T) 12 = TID) + L Ak 
k~1 

1 
- - L L RI' vRd I (v A I Tdfl K) (3.54) 

21'VKA 

- (vAITdKfl) J. 
Finally. one may take the average ofthe relations (3.51) and 
(3.54). which gives the comparatively simple formula 

1 N 
(T)12 = TID) + - L Ak 

2 k~ I 
1 + - LRl'v(vITllfl)' 
2 J.lV 

(3.55) 

It should be observed. however. that-since the stability 
equation tc = c A is very seldom exactly fulfilled-the 
expression (3.51) for (T) 12 is more fundamental than the 
relations (3.54) and (3,55). 

In a previous subsection. it was pointed out that the 
relations (3.12)-(3,17) were only approximately valid and 
that these steps in our derivation may be justified by a second 
application of the bivariational principle. In connection with 
the expansion methods. however. a simple alternative ap­
proach is also possible. which will be discussed below. 

Let us assume that the original trial wave functions <1>1 
and <1>2 are approximated by Slater determinants of one-par­
ticle functions", = Ilh J and <p = I if? I J -where k. I = 1. 2. 
3 ..... N-which in turn are built up by expansion methods 
from two one-particle sets 'I' and 4» of order M. respectively. 
so that 

(3.56) 

where 4», = 4»('1'14»)-1. If Mis finite. our starting point is 
hence more limited than before, In such a case. the funda­
mental projector P defined by (2.15) takes the special form 

p = Il/I)(<pll/l)-I(<pl 

= 1'I')c(dt c)- W (4)>r 1 

= 1'I')R(4)>rl. 
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where 

R = c(dfc)-ldt (3.58) 

is a matrix of order M XM which automatically satisfies the 
relations 

R2 = R, Tr R = N, R#Rt, (3.59) 

which are identical to (3.42). The form (3.58) reduces to the 
form (3.41) if the sets 1/J and cp are chosen biorthonormal, 
which is always possible by using the transformed set 
cpt = cp(1/J!cp) -I. For the moment, it may be preferable to use 
the more general form (3.58). 

Substituting the expression (3.57) for p into the relation 
(2.27), one obtains the formula (3.51), which now forms the 
starting point for the bivariational principle /) (T) 12 = O. In 
this case, one may vary the rectangular matrices c and d of 
order M XN or even better the charge- and bond-order ma­
trix R of order M XM subject to the constraints (3.59). In 
carrying out the details of this procedure it is not surprising 
that one recovers the formulas of the previous subsections, 
but now in a more exact form. In this approach it is hence 
sufficient to use the bivariational principle only once. 

In varying the coefficients R", v and Rd in formula 
(3.54), one should observe that, since the last term is quadrat­
ic in these quantities, the same contribution will be obtained 
twice from this term. Using (3.45), one gets directly 

(3.60) 

Using the same reasoning as in the relations (2.32)-(2.42), 
one finds that the necessary and sufficient condition for the 
fulfillment of the bivariational principle is that the projector 
matrix R decomposes the matrix t, i.e., 

tR=Rt (3.61) 

This problem is then solved by finding the similarity trans-
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formation S which brings the matrix t to classical canonical 
formA: 

S-ltS=A, tS=SA. (3.62) 

The rectangular matrices c and d of order M X N are then 
found by selecting the N essential solutions Ck and dk out of 
the column vectors of Sand (S-I)t , which means that the 
relation dt c = 1 n is automatically fulfilled. The new matrix 
R is then found according to the simple formula R = c dt . 

The matrix t and the projector matrix R are hence the essen­
tial tools for solving the Hartree-Fock equations occurring 
in this type of problem. Numerical applications of this 
scheme are carried out in other pUblications. 8 
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When is the Wigner function of multi-dimensional systems nonnegative? 
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It is shown that, for systems with an arbitrary number of degrees of freedom, a necessary and 
sufficient condition for the Wigner function to be nonnegative is that the corresponding state 
wavefunction is the exponential of a quadratic form. This result generalizes the one obtained by 
Hudson [Rep. Math. Phys. 6, 249 (1974)] for one-dimensional systems. 

PACS numbers: 03.6S.Bz, 03.6S.Ca, OS.30.Ch 

I. INTRODUCTION 

The Wigner function of a system in a pure state with 
wavefunction 1/1 (q,t ) is given byl-3 

F(p,q,t)=+ (dvl/l*(q+-iv,t)elilli)P.VI/I(q--iv,t), (1) 
fz n JR" 

where n is the dimensionality of the configuration space. It is 
well known 1-3 that this function has the properties of a prob­
ability distribution, with the exception that for some state 
wavefunctions it is not nonnegative. 

Thus it is pertinent to ask the question, when is the 
Wigner function nonnegative? In the case of pure states of 
one-dimensional systems an answer was already given by 
Hudson4 (a similar, but partly erroneous result was also pub­
lished by Piquet5

; for the sake of completeness this work is 
discussed in the appendix); he showed that the Wigner func­
tion is nonnegative if and only if the state wavefunction is a 
gaussian function: 

(2) 

where a, b are complex numbers with Re a > 0, and c is a 
normalization constant that can be taken as real4

; in other 
words, the Wigner function is nonnegative if and only if the 
system is in a coherent state (see Ref. 6 for the coherent 
states). 

In this paper we generalize this result to pure states of 
multidimensional systems. We show that a necessary and 
sufficient condition for the Wigner function to be nonnega­
tive is that the state wavefunction is of the form 

(3) 

where A is a symmetric complex matrix with [Re A [ > 0, b is 
a complex n-dimensional vector, c a real normalization con­
stant, and q = (ql, ... ,qn)' 

Our prooffollows the one given by Hudson4 for the one­
dimensional case. In actual fact, in Hudson's proof, only one 
step is not directly generalizable to several (complex) varia­
bles, namely that step where he utilizes the Hadamard fac­
torization theorem that, to our knowledge, does not have a 
several variables version. However, as we shall see below, 
only a restricted version of this theorem is needed, and this 
restricted version can be generalized to the case of several 
variables. 

a)Research fellow from the UNAM (Universidad Nacional Autonoma de 
Mexico). 

Thus the purpose of the present work is to prove this 
restricted version of Hadamard's theorem for several com­
plex variables, and to substitute this theorem for the genuine 
Hadamard theorem in Hudson's proof, which is thus gener­
alized to an arbitrary number of dimensions. 

The structure of the paper is as follows: In Sec. II we 
give the proof of the sufficiency; this is trivial and it is given 
only for the sake of completeness. In Sec. III we reproduce 
for several variables the first part of Hudson's proof (i.e., the 
part which precedes the use of Hadamard's theorem). We 
give. in Sec. IV, the proof of the restricted Hadamard theo­
rem for several complex variables. We finish the proof of the 
main theorem (about the Wigner function) in Sec. V. 

II. THE SUFFICIENCY CONDITION 

In order to find the Wigner function associated with the 
state wavefunction (3), we substitute it in (1) and we utilize 
the following result: 

i exp[ - -ix +Bx + T'X] dx 
R" 

_ (21T)n/2 [n (fj''ll] 
--[D[1/2 exp -i.2: -- , 

JIll J=I !-lj 
(4) 

where [B[ > O. ~ Ij = 1, .... n) are the eigenvectors ofB and!-lj 
Ij = 1 .... ,n) the corresponding eigenvalues. We then find that 
the Wigner function associated with the wavefunction (3) is 

F(p,q) = 12 1 /2 exp{ - [q+Re Aq + 2Re b·q + c] 
~ fzn[Re A[I 

_ jtl [ej.(q+Im A + ~jm b + (l/fz)p)]
2 

}, (S) 

where ej Ii = 1 , ... ,n) are the eigenvectors of Re A and A.j 
Ii = 1, ... ,n) its eigenvalues. 

Thus the Wigner function of a multidimensional Gaus­
sian wavefunction is a multivariate Gaussian distribution, 
which is always nonnegative. 

III. THE NECESSITY. FIRST PART 

We want to find which is the set of wave functions that 
give a nonnegative Wigner function. Let us denote by n this 
set, and let us take an arbitrary element 1/1 of it; we define in 
the complex space en the complex function J (z) as 

J(z)=eO/2k(I/I[I/II.Z)' (6) 

where I/II,z corresponds to definition (3) with A = 1. b = z, 
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and 

(7) 

This function J (z) has the following properties: 
(1) It is an entire function. This is evident from its defini­

tion (6) and from (3) and (7). 
(2) It does not have zeros in cn. 

To prove this we utilize the following property (see Refs. 4 
and 7): 

r dp dq F; (p,q)FI/' (p,q) = _1_1 (1JI. 11JI2 ) 12. (8) 
JR2n ' , (21T)n 

Using it in the definition (6) we find 

IJ (zW = eC(21Tt r dp dq F ;(p,q)F 1/'1 (p,q), (9) 
JR2n ,z 

and since F I/' (p,q) > 0 \;f ZECn and IJIEfl [therefore F I/' (p,q) 
l,z 

;>0], we have 

IJ(zW>O \;fzEC (10) 

which gives the desired conclusion. 
(3) Its order of growthp (see Sec. 26 in Ref. 8) is at most 

two (,0<2). [Let us recall that the order of growth of a func­
tionJ(z)maybedefinedasp = limR _ oo In In M (R )Iln R, with 
M(R) = sUPlzl =R [((z)I·] 

From (6) we have 

IJ(zW<ec IIIJII1 2111J1I ,z W, (11) 

and using (4), 

II 1JI1 •
Z 
W = e - C(1Tt12 exp {(Re Z)2]. (12) 

Thus, 

IJ(zW<1T"12 11 1J1 11 2exp[(Re zfl. (13) 

Since the order of growth of exp[(Re zf] is obviously two, we 
conclude that p<2 for [J (z)]2, and therefore also for J (z). 

We remark that this property implies that the order of 
growth of J as a function of only one of its variables (the other 
being fixed) is also at most two. 

From these three properties we would like to find the 
explicit form of the function J (z), which in fact, for z = iy, is 
the Fourier transform of e - (1I2)Q2 1J1 *(q). At this point the 
problem ofthe generalization arises (until now we have fol­
lowed Hudson's proof); in the one-dimensional case Hudson 
utilizes the 

Hadamard factorization theorem9
: IfJ(z) is an entire 

function of order p with an m-fold zero at the origin, we have 

J(z) = z'" eQ(z) P(z), (14) 

where Q (z) is a polynomial of degree r<p and P (z) is the ca­
nonical product (of genus s) formed with the zeros (other 
than z = 0) ofJ(z). 

With this theorem and Properties (1)-(3) we conclude 
(in the one-dimensional case) thatJ (z) is of the form (14) with 
z'" and P(z) absent, 

J(z) = exp[ar +/3z + y], (15) 

and thus thatthe Fourier transform of e - (1I2)q' 1JI*(q) is Gaus­
sian, which is possible only if IJI (q) itself is Gaussian. 

To our knowledge, a generalization of Hadamard's 
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theorem to several variables does not exist, and one of the 
reasons is that, in this case, both zeros and poles are not 
isolated as in one dimension. But in actual fact, the essential 
part of Hudson's proof is that an entire function without 
zeros is the exponential of a polynomial; thus, when there is a 
functionJ(z) with zeros, they are eliminated by dividing it by 
zm P(z), and then, using this fact, the expression (14) is ob­
tained. As we said, in several variables it is the product zm 
P (z) which is not easily generalized. 

Nevertheless, in order to find the expression of J (z) a 
restricted version of the Hadamard theorem is sufficient, 
namely the version corresponding to a function without ze­
ros. This restricted version may be more easily generalized, 
and this is done in the following section. 

IV. THE RESTRICTED VERSION OF HADAMARD'S 
THEOREM 

Weare going to prove the following 
Theorem: IfJ(z) is an entire function, in the space of n 

complex variables en, with order of growth p and without 
zeros, we have 

(16) 

where Q (z) is a polynomial of degree r<p. 
Proof We are going to give the explicit proof of this 

theorem for two variables only, the case of n variables being 
more cumbersome and without anything especially new. 

Let us fix Z2 inJ(z .,z2); we thus have an entire function of 
z., with order of growth at mostp and without zeros; by the 
Hadamard factorization theorem we can write it as 
expp:;=.aj?'] withr<pand whereaj(j = 1, ... ) depends on 
Z2' and this is valid for all Z2 finite. Thus we have 

J(Z.,z2) = exp [jt.aj (Z2lz'. ] (17) 

in the set 

( 18) 

Keeping now z. fixed, and proceeding in the same way, 
we conclude that 

J(Z.,z2) = expLt./3dZ.)Z~ ] ( 19) 

in the set 

[)2 = [(ZI,Z2):0< IZII <M2, Z2ECj (20) 

and with s<p. 
SinceJ(z .,z2) is an entire function without zeros, we may 

define its logarithm Q (ZI,z2) as an entire one-valued function 
over e2, and, from (17) and (19) we deduce that 

i a j (z2)zi. = i /3dzl)z~ (21) 
j= I k= I 

in [)In[)2' because these two functions are just two expres­
sions in [) In[)2 of one and the same function 
Q(ZI,z2) = In!(zl,z2)' 

Now, we differentiate (21) n times (n<s) with respect to 
Z2 [this is possible, because Q (z.,zz) is an entire function], thus 
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obtaining 

r In) . S k ! k _ n 
Laj (Z2)z'1 = L PdZI)z2 

j=1 k=n(k-n)! 
(n = 1,2, ... ,s), 

and, taking Z2 = 0, we get 

r atl(O) . 
Pn(ztl = I --zli (n = 1,2, ... ,s) 

j= I n! 

for all z, such that 0 < IZII <M2• Thus, 

r s ajk)(O) . k 
Q(ZI,z2) = L I --zlIZ2 

j=lk=1 k! 

(22) 

(23) 

(24) 

in D lnD2. Denoting for brevity aJ(O)lk! = Yjk' we finally get 
the expression 

In!(zl,z2) = Q(ZI,Z2) = I i Yjkzll Z; (25) 
j= I k= I 

in D InD2. In fact (25) is valid in every bounded set of (;2 
because MI and M2 in (18) and (20) are arbitrary but finite. 

Since Q (z I ,z2) is an entire function over (;2, it is easily 
deduced by analytic continuation 10 that (25) and hence 

!(ZI,z2) = eXP[jtl ktlYjkzilZ; ] (26) 

are valid in the whole complex space (;2. 
It only remains to show that the degree of Q (z 1,z2) is at 

most p, i.e., that in (26) Yjk = 0 for j + k > p. Supposing that 
this is not the case and taking ZI = Z2 = R (real) we easily 
conclude that the order of growth of!(z 1,z2) would be greater 
thanp, in contradiction with the assumption made; thus Yjk 
= 0 for j + k > p and the proof is completed. 

V. THE NECESSITY. SECOND PART 

We start from the results obtained in the first part (Sec. 
III). We defined the function J = en~(; such that 

J (z) = el1/21e (1/I11/I1.z > (27) 

with I/IEfl, and we found that it has the following properties: 
(1) It is an entire function. 
(2) It does not have zeros in en. 
(3) Its order of growth is at most two. 
Thus by the restricted version of Hadamard's theorem 

in several dimensions, we have 

J (z) = exp 1 j,.J
n 

tl aj"Jn zit' ... z'; + jtlPjZj + y}. 
u, + ... + i" ~ 21 

Now 

u, + ... + in ~ 2) 

but from its definition (27) we also have 

J (iy) = ( dq I/I*(q) e - (112)q' e - iy .q , 

JR" 
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(28) 

(29) 

(30) 

i.e., the Fourier transform of e - (1/2)Q'I/I*(q) is a multidimen­
sional Gaussian function, which implies that e - (112)Q'I/I*(q) 
itself is a Gaussian function, and n is the set of multivariate 
Gaussian functions, which is the desired result. 

VI. CONCLUSION 

The question concerning the nonnegative character of 
the Wigner function is therefore now completely settled for 
pure states: whatever the number of variables, only the 
Gaussian wavefunctions give rise to a nonnegative Wigner 
distribution (which is itself Gaussian, too). Of course, as 
mentioned by Hudson,4 the study of this question for mixed 
(instead of pure) states remains an open problem. 
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APPENDIX: DISCUSSION OF PIQUET'S TREATMENT 
CONCERNING THE ONE-DIMENSIONAL CASES 

Piquet's proof is correct for a real wavefunction 1/1, ex­
cept that the restricted form 1/1 = exp[ - (ax2 + b )] with 
a> 0 and b > 0 is unnecessary I I (see before Theorem 3.3 in 
Ref. 5; this paper is brief, but all the argument can be recast­
ed in a detailed form II). However in the case of a complex 
wavefunction, his proof is incorrect. He considers 1/11/1* and 
applies to it the result for a real function; then he utilizes the 
Levy-Cramer Theorem 12 which states that if the product of 
two characteristic functions is Gaussian they are also Guas­
sian, in order to conclude that 1/1 is of the form (2). Neverthe­
less the application of the Levy-Cramer theorem is not le­
gitimate because we do not know a priori whether 1/1 and 1/1* 
are characteristic functions, and in actual fact, it is easy to 
see that in general (2) cannot be considered as a characteristic 
function (we would like here to thank Dr. Hudson and the 
referee for drawing our attention to this point). 

Finally, we want to mention that Dr. Piquet has modi­
fied his proof, II which is now correct and actually gives ex­
actly the same conclusion as Hudson's proof. This modified 
proof remains essentially different from Hudson's one, in the 
sense that this proof does not make use of the Hadamard 
theorem but uses instead some properties of convex func­
tions (by the way, in his modified proof, Piquet does no long­
er distinguishes the peculiar case where 1/1 is real: the proof 
holds directly for complex 1/1). 
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The purpose of this article is to obtain a scalar function the zeros of which give the discrete energy 
values for a system of electrically charged particles. The relation between the serial expansion of 
the characteristic function in powers of the system's eigenvalue and the Stieltjes series has been 
revealed not only for the electrically charged particles but also generally for any positive (or 
negative) definite Hermitian operator which has only a discrete spectrum. The use of Pade 
approximants to express the characteristic function has offered a rapidly convergent scheme to 
eval uate the system's eigen values. The first few elements of the Pade Table for the reciprocal of the 
characteristic function of certain systems have been given to verify the presented idea 
numerically. The determination of these elements needs the values of certain complicated 
integrals which we name "Zeroth Order Hyperspherical Spectral Coefficients" [HSC(lPo)]' The 
first two of these coefficients are investigated and their evaluation is realized analytically. 

PACS numbers: 03.6S.Ge 

I. INTRODUCTION 

Several authors have employed the space folding meth­
od together with some perturbational schemes in quantum 
mechanical calculations. 1.2 The main idea of this procedure 
is to convert the original eigenvalue equation into a scalar 
one. To this end, the solution space of the original equation is 
divided into a conveniently chosen space and complemen­
tary with the aid of some projection operations. After some 
intermediate steps one can arrive at a scalar equation for the 
determination of the original equations' eigenvalue. Homog­
enization of this equation gives a function, zeros of which are 
the desired eigenvalues of the operator under consideration. 
The serial representation of this function in powers of the 
eigenvalue parameter is needed to obtain an explicit struc­
ture. This expansion does, however, converge only in a res­
tricted domain of the complex plane of eigenvalue parameter 
which does not cover all the eigenvalues of the operator un­
der investigation. Fortunately we have a possibility of ob­
taining such a representation which is valid on the domain of 
all desired eigenvalues and offers a rapidly converging com­
putational scheme. Indeed, rational approximations and the 
Pade Table built for them have this property. Recent years of 
science bear an increasing tendency to use Pade approxi­
mants in several problems of physics and chemistry.3-7 The 
effectiveness of such rational approximations is that in most 
cases only a few approximants are sufficient to obtain a rea­
sonable accuracy. 

In the following sections we shall obtain the character­
istic function for a positive definite operator having only a 
discrete spectrum and investigate its serial expansion in the 
sense of Stieltjes series. Some analytical evaluations and nu­
merical calculations for certain systems will complete the 
present work. 

II. DERIVATION OF THE CHARACTERISTIC FUNCTION 

Consider a system which can be described by the fol-

lowing equation: 

A/=,.1.Wf, (2.1) 

where the Hermitian operators A, W, the scalar A, and 
the function/ characterize the structure and the behavior of 
this system. A and Ware two operators on a Hilbert space, 
and may be matrices, integral operators, or differential oper­
ators with some compatible boundary conditions. As in most 
of the quantum mechanical problems we can assume that at 
least one of the operators A and W is positive definite and 
hence is invertible. We can also additionally assume that the 
Eq. (2.1) has only a discrete spectrum and its eigenfunctions 
form a complete basis set for the Hilbert space under consid­
eration. On the other hand another assumption which states 
the boundedness of the operator A - 1/2 W A - 1/2 is needed to 
prove the theorem of the next section. 

Let us choose a normalized function lPo in the Hilbert 
space spanned by the eigenfunctions ofEq. (2.1). Decompo­
sition of/into two orthogonal components, one of which is 
proportional to lPo, gives the equalities below, 

/=A lPo + g, 

(lPo, g) = 0, 

(2.2a) 

(2.2b) 

where A is constant and the left side of the last equality 
denotes the inner product of lPo with g. By using Eqs. (2.2a) 
and (2.2b) in Eq. (2.1) and taking the inner product of the 
resulting equation with lPo one can get the following relation: 

( lPo, A lPo)A + ( lPo, A g ) = A (lPo, W lPo)A + A (lPo, Wg). 
(2.3) 

Ifwe define some projection operators Po, Pc in the fol­
lowing equations where I denotes the unit operator on the 
aforementioned Hilbert space and h represents an arbitrary 
function in the same space, 

Poh = ( lPo, h ) lPo, 

Pc =1 - Po, 

(2.4) 

(2.5) 
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we can obtain another relation between g and A by using the 
fact that Pc is the unit operator on the complementary space 
of fPo; henceg = Pc g. Following some algebraic steps we can 
get the formal result given below, 

g= - [Pc(A -AW)Pc]-IPc(A -AW)97oA. (2.6) 

The elimination of g using Eqs. (2.6) and (2.3) leads to 
the following algebraic equation: 

(fPo, [A -AW]fPo)A =(970' [A -AW]Pc[Pc(A -AW) 
XPc] -Ipc [A - AW ]fPo)A. (2.7) 

Recalling the relation fPo = PofPo, we can immediately 
notice that the operators in the expectation values above can 
be obtained from the matrix representation of A - A W via 
some reduction operators. We can therefore conclude the 
following equality after some intermediate steps: 

(fPo[A - AW ]fPo) - (970' [A - A W ]Pc [Pc(A - A W)Pc] -I 

X Pc [A - A W ] 970) = ( 970 [A - A W ] - I fPo) - I. (2.8) 

This result together with Eq. (i~7) implies the fact which is in 
a certain sense apparent that the zeros of the following func­
tion are the values of A: 

.:1 (fPolA ) = ( fPo, A -I fPoH fPo, [A - A W] -l fPO )-I.(2.9) 

We name this function "Characteristic Function of Eq. (2.1) 
with respect to the basis function fPo" or briefly "Character­
istic Function." For the characteristic function to exist, A 
must be assumed to be positive definite and this does not 
contradict with our assumptions about the operators A, W. 
Indeed, in the case where only W is positive definite, refor­
mulation of Eq. (2.1) with a new eigenvalue parameter A - I 

instead of A makes it possible to interchange W with A. 
Let us now investigate the case A = ° which satisfies 

Eq. (2.7). In this situation one has to find a nonzero element 
for g in Hilbert space to obtain a nontrivial solution of Eq. 
(2.1). However, a nonzero g with a vanishing A implies that 
Pc (A - A W)Pc must be singular and finally fPo must be an 
eigenfunction of Eq. (2.1), as can be deduced from Eq. (2.6). 
But this means 970 has coincidentally been chosen as the ex­
act solution ofEq. (2.1); therefore the case A = ° can be inter­
preted as trivial. 

The selection of fPo may affect the number of zeros of the 
characteristic function. Indeed, in the case where 970 can be 
expressed as a finite linear combination of the eigenfunctions 
ofEq. (2.1) the characteristic function produces a finite num­
ber of eigenvalues. The possibility of selecting fPo as a finite 
linear combination of the eigenfunctions by chance de­
creases when the structures A and Ware complicated. 

The in variances of A and W under certain transforma­
tions (for example, the exchange of the particles coordinates) 
give the possibility of separating the solution space for Eq. 
(2.1) into two subspaces, one of which contains the symmet­
ric functions and the other the antisymmetric ones, under 
one of the transformations mentioned above. If, however, all 
these transformations are commutative each of the sub­
spaces can be further separated into similar subspaces. If fPo 
has been selected in one of these subspaces, the characteristic 
function will definitely not give any eigenvalue correspond­
ing to other subs paces. 
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III. PADE SCHEME FOR THE CHARACTERISTIC 
FUNCTION AND ITS CONVERGENCE 

The characteristic function defined by Eq. (2.9) has an 
explicit form. To find the zeros, what one needs is its explicit 
expression. One of the possible ways to this end is to expand 
the characteristic function in powers of A. However, this 
type of expansion (Taylor series) does not cover all the com­
plex domain of A. This fact can be seen by using an expansion 
of 970 in terms of the true eigenfunctions of Eq. (2.1). Indeed, 
such an expansion creates the reciprocal of an infinite sum 
over simple fractions and the convergence domain of the 
Taylor series for this type of functions is restricted. In spite 
of its restricted convergence domain, the Taylor expansion 
of the characteristic function is not all that incovenient. Us­
ing some analytic continuation methods one can obtain the 
expression of the characteristic function over the whole 
complex domain of A. The Pade scheme8 which has recently 
been widely used, is a powerful example amongst such meth­
ods. We shall also employ this scheme to obtain the approxi­
mate spectrum of the system under consideration. For this 
purpose, first of all, we shall try to make a bridge between the 
characteristic function and Stieltjes series.8 We shall then 
have the possibility oflearning about the convergence of the 
Pade scheme and some of its important properties. Towards 
this goal, we can begin with the following theorem. 

Theorem 3.1: If A is a bounded positive definite Hermi­
tian operator the function A defined as 

(3.1) 

when expanded into the powers of A, produces a Stieltjes 
series. 

Proof The serial representation of Li can be written as 

'" Li (¢ IA ) = I (¢, A j¢ H - A y. (3.2) 
j= 0 

If we construct an n + 1 dimensional square matrix with its 
elements defined in the following manner, 

flit = (¢, Am +j+ k¢), 

m,n = 0,1,2, ... , (3.3) 

j,k = 0,1,2, ... ,n, 
all we have to do is to show the validity of the following set of 
inequalities known as one of the definitions of the Stieltjes 
senes: 

detilon>O, n =0,1,2, ... , 

detil In>o, n = 0,1,2, ... . 

(3.4a) 

(3.4b) 

Now, consider the following quadratic form (Cj 's are arbi­
trary constants): 

n n 

I CjCkil;n = (¢,A ml I CjA j12¢ ). (3.5) 
j,k = 0 j = 0 

Since A is Hermitian and positive definite A 1/2 can be de­
fined easily and this fact gives the possibility of writing the 
following equalities: 

¢ = i CjA j+ mI2¢, (3.6a) 
j= 0 
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± ctCJ1;n = (p, (p) = 11(p W· (3.6b) 
J.k ~O 

Using the positive definiteness of A, one can conclude that 
the quadratic form given by Eq. (3.5) is always positive for 
any nonzero basis function t/J. However, a careful use of the 
matrix theory shows that {} ;n must be a positive definite 
matrix and this implies the validification of Eqs. (3.4a), and 
(3.4b) and therefore the correctness of the Theorem 3. 1. 

From this theorem the following corollaries can be 
written by recalling some theorems about Stieltjes series.8 

Corollary 3.1: The reciprocal of the characteristic func­
tion can be expresed as a Stieltjes series by expanding into 
powers of A. [Indeed the use of the scalar A, the function 
t/J = (970,11 -1 (70 )A 1/ 2970' and the operator 
A = A -l/ZWA -1/2 instead of - ,.1,,970 and W, respectively, 
brings us to this conclusion.] 

Corollary 3.2: Any sequence of [L + MIL] Pade ap­
proximants to the Stieltjes series for the reciprocal of the 
characteristic function converges to an analytic function in 
the cut complex plane 0 <A < 00 as L increases unbounded­
ly. The index M is restricted as M > - 1 and the definition of 
[L 1M] Pade approximants can be written as follows: 

[L 1M] = PL(A )IQM(A), QM(O) = 1, (3.7) 

wherePL and QM aretheL th andMth order polynomials of 
A, respectively. 

Corollary 3.3: The A values obtained by using the 
[L + MIL ](M > - 1) Pade approximants to the reciprocal 
of the characteristic function are on the positive real axis and 
theA values (approximate eigenvalues) corresponding to the 
successive approximants interlace. 

This theorem and its corollaries show how to obtain an 
approximate spectrum for a positive definite operator, fur­
thermore they guarantee the convergence of the presented 
scheme. Therefore, to obtain the spectrum of a posith:e defi­
nite operator one has to evaluate the terms like (t/J,Alt/J), to 
construct the Pade table and then to arrive at the approxi­
mate spectrum by tracing some diagonals starting from one 
of the approximants like [L II], L = 1,2, ... or [1/2). Sections 
to follow will cover this type of work for electrically charged 
particles. 

IV. ELECTRICALLY CHARGED PARTICLES AND 
HYPERSPHERICAL SPECTRAL COEFFICIENTS 

Quantum chemical systems are composed of electrons 
and nuclei. After the separation of mass center coordinates 
and a suitable diagonalization procedure, the spin-free 
Schrodinger equation can be put into the following form 
without taking care of relativistic contributions9

•1O: 

rU - V2)¢ = lUV(e )¢, lU > 0; ¢(r) = 0, (4.1) 

where r,e, V2
, and v(e) stand for the hyper-radial coordinate, 

the set of hyperangles, 3N-dimensional Laplacian 
(N + 1 = the number of the particles in the system), and the 
hyperangular interaction potential, 10 respectively. The ac­
companying boundary conditions for Eq. (4.1) are the usual 
continuity conditions, at the singular points of the system's 
Hamiltonian. The eigenvalue parameter 97 is related to the 
system's dimensionless energy parameter E as follows: 
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(4.2) 

Equation (4.1) is different than the original Schro­
dinger's equation for a system of electrically charged parti­
cles. Indeed in the original Schrooinger's equation the poten­
tial term v(e) forms a part of the operator, the eigenvalues of 
which are investigated. In the present case, however, v(e) is 
in a different position. Since th~ structures of the operators 
change when we transform from the original Schrodinger's 
equation into Eq. (4.1) we can expect the spectral behavior of 
the problem to change also. Due to the fact that the charac­
teristic values of Eq. (4.1) correspond to the negative­
bound state-energy values of system and this part of the 
energy spectrum is discrete we conjecture that the lU spec­
trum is also discrete. As a matter of fact the lU spectrum of 
the simplest system-hydrogen atom-is discrete, although 
its energy spectrum has discrete (some negative values) and 
continuous (all positive real axis) spectra. 

Although some or all of the characteristic values ofEq. 
(4.1) may be negative depending on the nature of the interac­
tion characterized by v(e), the constraint lU > 0 in Eq. (4.1) 
which appeared while transforming the original Schro­
dinger's equation into Eq. (4.1), eliminates these negative lU 

values. Therefore negative lU values do not correspond to any 
physical state; however, their existence may help us to classi­
fy the bounded states. To this end we can name five possible 
cases in the following manner with respect to the nature of 
the lU spectrum: (i) only positive lU values, "completely 
bounded system," (ii) including zero, a finite number of nega­
tive lU values in addition to positive lU values, "incompletely 
bounded system with a finite deficiency," (iii) infinitely many 
positive and negative, lU values, "incompletely bounded sys­
tem with infinite deficiency," (iv) a finite number of positive 
lU values in addition to negative lU values, "highly deficient 
system," (v) only negative lU values, "unbounded system." 

Now, if we define A and Was follows, 

(4.3) 

w=v(e), (4.4) 

to evaluate the characteristic lU values we can use the charac­
teristic function approach presented in previous sections. 
Toward this end the following expansion can be employed: 

J (t/J 1- lU) = I.1jlUJ, (4:5) 
J~O 

where.1j' the "hyperspherical spectral coefficient with re­
spect to the basis function ({Jo" or briefly HSC(97o), can be 
explicitly expressed by using an orthonormal expansion in 
terms of hyper spherical harmonics and their addition theo­
rem II to put the inverse of A given by (4.3) into an integral 
operator form as follows: 

( rIa) y- I '" '" 1"'1 1 .1j = --+-1 L'" L ... t/J (r'SI) 2rr: k, ~ 0 kj ,~ 0 s, s, 

X tv: [P + kdk[ + 2a)] - Ir} v(sd 
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x [~D:(kl + a)C~,(s iS/+ I) V(S/+ I)] 

X¢J (r,Sj)dSj ... dS,dr, (4.6) 

where v(S) is used instead of v(O) and SI and q (x) stand for 
the unit position vector which only depends on hyperangles 
and ath kind k th order Gegenbauer polynomial, I I respec­
tively. The parameter a is defined as (3N - 2)/2 and the 
function ¢J is as defined in Corollary 3.1. p denotes the hyper­
radial part of the operator r A. 

By defining a new operator p as follows, 

(4.7) 

and using the Lebedev transform 12 technique which enables 
us to express the effect of the operator rp[(k + a)2]-1 on a 
Lebedev transformable function of r,h dr) as follows, 

h2(r)=r[p+(k +af]-'h,(r), (4.8) 

H 2(y) = 1"" [x2 + (k + a)2]-1 

X (cosh 1TX + cosh 1Ty)-12y sinh 1TyH,(x) dx, 
(4.9) 

we can convert the hyper-radial parts of Eq. (4.6) into 
(j + I)-dimensional integrals without using any differential 
operator included in their kernels. HI and H2 appearing in 
Eq. (4.9) are Lebedev transforms of hI and h2' respectively, 
and the argument of modified Bessel function 12 in the kernel 
of the Lebedev transform is multiplied by ! for the sake of 
convenience. 

On the other hand the following relation shows that the 
sums on Gegenbauer polynomials in Eq. (4.6) can be ex­
pressed in terms of hyper geometric functions. 12 Using some 
properties of hypergeometric functions 

~ k +a Ca(f:'T) 
£... (k )2 2 k ~ rJ 
k~O +a +X 

_ 1 1"" 1 a - I + ix + 1 a - I - ix 
-- dl. 

2 0 [ 1 - 21 (S T rJ) + 1 2] a 
(4.10) 

This last relation can be verified by using the method of 
separation into partial fractions, integral representation 12 of 
these partial fractions, and the summation formula 12 for Ge­
genbauer polynomials. 

Therefore by defining a new function /3a (x,y), 

P"lx.y1 ~ x ,inh ,,+( a: iX)r (a ~ ix) 

x,p( :'x,~ ~iX ~') 

+ 2yr (a + ~ + iX)r (a + ~ - iX) 

(

a + ~ + ix , a + ~ - ix IY2)] 
X 2FI 3 ' 

2 (4.11) 

one can arrive at the following expression for ilj after some 
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intermediate steps: 
A _ 22 - 2j I I - Jlla + I) .. 2 
~j - 1T 

j j - I 

X ¢J (r,S),a II V(S/) II /3a (XI,s iSI + I ) 
I~ I I~ I 

j-2 
X II (cosh 1TX{ + cosh 1TX{+ 1)-1 

{~ I 

XdS,,,.dSjdx,.,,dxj_,drar. (4.12) 
In the case where the (J) spectrum has negative together 

with positive spectra the convergence of the Pade scheme for 
the reciprocal of the characteristic function can be proved 
depending on the locations of poles for some domains of (J). 

However, this subject will be held outside of this paper, since 
some redefinitions of the operators and parameters make it 
possible to study with positive definite operators. 

V. ANALYTICAL DETERMINATION OF THE FIRST AND 
SECOND HYPERSPHERICAL SPECTRAL COEFFICIENT 

Since the evaluation of ilo is trivial (.:10 = 1) we can start 
with .:1 1' For its determination, one can select as the simplest 
basis function CPo' e - r/2, which is the ground state eigenfunc­
tion of [r(! - V2)] - I and this yields an integral on hyperan­
gles. Using the explicit structure of potential function 10 v(O) 
and rotating the hyperaxes in such a manner that the matri­
ces appearing in the potential function are diagonalized, we 
can arrive at the following value for ill: 

.:1 = 2F(a+ 1) [_ ~ N~I ZZ (-. - )-1/2] 
I 1/2 £... £... J k mJ + m k , 

[1Tr(a+m j~1 k=j+1 
(5.1) 

where Zj and "lj denote "electrical charge parameter" and 
"mass parameter" ofthejth particle, respectively. 10 

Performing the integration over rand rin Eq. (4.2) and 
recalling the evenness of the potential function vIs ) with re­
spect to its argument, il2 can be brought to a finite sum of the 
following (6N - 1) dimensional integrals: 

S~:~: = roc r r (s 1'~,k.s )-1/2(rJ1'~,k, rJ)1/2X Jo Js,,Js{, 
X sinh 1TXr 2(a + 1 + ix) 

Xr2(a + 1 _ iX)r( a: lX)r( a ~ iX) 

(

a + ix a - ix I(s 1'rJ )2) 
2 ' 2 

X 2FI 1 dSt;d."dx, 

2 
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where ~k 's denote potential matrices. 10 The integration over t and 'T/ can be analytically handled 13 and S };Z; can be expressed 
in terms of some one-dimensional integrals as follows: 

s);~: = 64~:~1 [YI(Y} + Y 2(y}- 2~~:~a~}Y3(Y}]' (5.3) 

where Y has the meaning given in a previous paper13 and the integrals denoted by Y's have kernels which contain a hyperbolic 
sine function, some complex argumented gamma functions and their conjugates, and certain hypergeometric functions 
3F2' 2FI with complex parameters and their conjugates. 

Using the explicit expression of the modulus of the complex argumented gamma function l2 for integer a values 
(a = n + I) and the explicit structures of the generalized hypergeometric function 14 3F2 and Gaussian hypergeometric func­
tion 12.14 2FI in addition to some properties of the digamma function t/J (logarithmic derivative of the gamma function), one can 
summarize the following results after detailed and tedious intermediate steps: 

{
I d 3 n - I 2 } arcsin Y 

Y1{y}= 9"9"+I~-d 3 II iZY"mt/J(t+!) 
811 t m ~ I t ~ 0 Y 

(5.4) 

_ (-It n! d" [ (I_y)1I2] Y (y) ---- v --
2 - 2-+ I Y dy" " 1 + Y 

Y 3(y) = (!}n ( - 1 )n2" + 11T :; 

[
1 + {- It 1- (- I)" ](1 .;2)-1/2 X 0"1 - 0"2Y - r 

2 2 
X arcsin Y, {5.6} 

where the new entities appearing above can be explicitly de­
fined as follows: 

1 d 2 

9J m =m
2 
+ 4~ dt 2 ' 

d 2 d 
9 m = m

2 + {I - r} dr - Y dy' 

v=22n~{I+(-lto" +1-(-1)"0"} 
n- 2 I 2 2 , 

(5.7a) 

(5.7b) 

(5.8) 

1 - ( - 1)" (n "HJ12 2 } nr,J 
+ 9 0 11 9 2m 11 9 k-n/2' 

2 m~1 k~1 
(5.9) 

"/2 

0" I = II D ~m + I , (5.1O) 
m=O 

These therefore complete the analytical evaluation of ..:1 2' 

VI. APPLICATIONS TO CERTAIN SYSTEMS AND 
CONCLUSION 

Employing the values of..:11 and..:1 2 given in the previous 
section one can evaluate the Pade approximants [L / M], 
where L + M = 0,1,2. For this purpose we can give the ex­
plicit expressions of these entities in terms of ..:1 1, ..:1 2, and w as 
follows: . 
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[0/0] = 1, 

[a/I] = {I -..:1IW}-I, 

[liD] = 1 + ..:1 lw, 

[0/2] = [1-..:1lw+(..:1~ -..:1 2}W2 ]-I, 
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(6.1) 

These equalities show that the first column of the Pade 
table has no pole. Therefore it does not produce any value for 
w. Physically reasonable w values obtained from [0/1], [111], 
and [0/2] for certain three particle systems are presented in 
Table I. As can be noticed easily the approximation for He is 
in good agreement with the exact results. 15 However, dis­
crepancy between the calculated and exact values increases 
as the atomic number increases in helium isoelectronic se­
ries. This difficulty can be removed by using higher order 
Pade approximants or different types of basis function. The 
hydrogen anion case ought to be fundamentally different 
than heliumlike systems, since it seems to have negative val­
ues in its w spectrum. The mathematical character of the 
hydrogen anion is under a detailed investigation and possi­
bly will be published in the future. The selection ofthree­
particle systems as examples is due to the fact that they are 
the most realistic systems which have symmetric eigenfunc­
tions under coordinate exchange transformation among all 
N-particle systems. However, for integer a values, similar 
calculations can be handled and some approximate values 
can be obtained since integer a values make it possible to 
evaluate..:1 2 analytically. However, half-integer a values are 
also as much realistic as the integer ones. In this case at least 
numerical methods can be utilized to this end. Due to the 
fact that all evaluations use a symmetric basis function CPo, all 
results will correspond to the symmetric eigenfunctions of 
the system under consideration. Although these results give 

TABLE I. Energy values' obtained from several Pade approximants for 
heliumlike systems. 

Eo,b E
02

< E" EPIC d 

H- 0.3854 0.5349 0.5642 0.5278 
He 2.5000 2.8659 2.8927 2.9037 
Be++ 12.2627 13.2915 13.3347 13.6555 
C+ 4 29.4034 31.4083 31.4766 32.4062 
0+ 8 53.9221 57.2169 57.3176 59.1565 

'To obtain the energy values in eV all columns must be multiplied by 
- 27.196eV. 

b ELM has been calculated from the pole of [L / M] Pade approximant. 
cThe [012] term has two poles, but only one of them is physically mean­

ingful. 
d These results are due to Pekeris et al. (Ref. 15). 
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some information about the mathematical structure of the 
systems spectrum, the Pauli principle makes them physical­
ly meaningless almost for all atoms and molecules. Since we 
did not consider contributions due to the spin of particles 
there remains only a few systems such as helium like atoms 
which have symmetric eigenfunctions in the physical sense. 
On the other hand there does not seem to be any clue which 
shows the existence of a spectral series corresponding to 
symmetric behavior of the system in the experimental re­
sults. Therefore the symmetric basis function rpo will be use­
ful only for a few systems, in the physical sense. However, 
these calculations can be realized for other types of basis 
functions without extra effort. The studies to this end are 
under a condensed work. 

As can be easily noticed, spectral coefficients keep all 
information about the system under investigation. Therefore 
more accurate results await the values of higher order hy­
perspherical spectral coefficients. The work for this purpose 
has been almost completed. After finalizing some details it 
will be the subject of a coming publication. 
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The S matrix near a pole is parametrized into the contribution from the resonance and the 
background s~attering. We develop a perturbation theory for the background scattering, based on 
the Jost function formalism. A closed expression is found up to the second order in the coupling 
strength between the channels, A brief comparison with the other formalism is also made and the 
advantages of the present theory are shown. 

PACS numbers: 03,80, + r, 11.20.Dj, 24.1O.Dp 

1. INTRODUCTION 

The major problem in the theory of resonances is to give 
a qualitative and quantitative description of how they are 
observed in the scattering cross sections. In the collisions 
where the scattering amplitude is given by the contribution 
of only a few partial waves, e.g., nuclear reactions, electron­
atom scattering or atom-surface collisions, the problem is 
always reduced to a question: how the S matrix is parame­
trized in the vicinity of a resonance. The simplest answer is 
given using the complex energy formalism in which a reso­
nance is represented by a pole of the S matrix. 1.2 In general, 
the pole is a complex number,3 and since we will regard theS 
matrix as a function of the wavenumber rather than the ener­
gy, we can write for a general element of the S matrix in the 
vicinity of a pole ko 

(1.1) 

where k is the real wavenumber corresponding to the colli­
sion energy. Broadly speaking (1.1) is a three parameter for­
mula: ko gives the position of the resonance [Re(koll and its 
width [Im(koll, while the residue measures the height of the 
resonance and the background term bm,n describes its shape. 

The parametrization (1.1) is the well-known Breit­
Wigner formula,4,5 except that instead of the wavenumber 
they used the energy as the variable. However, this is not the 
major obstacle since by multiplying both the numerator and 
the denominator of ( 1.1) by (k + ko), we obtain the usual 
Breit-Wigner form. The form (1.1) gives quite a good de­
scription of the S matrix near a pole and would be of interest 
to relate the three parameters to the coupling matrix be­
tween the channels. Several schemes were proposed6-9; how­
ever, the one due to Feshbach 7 has been used in many appli­
cations. The advantage of the Feshbach formalism is that it 
can also be used away from a resonance, and therefore, it can 
serve as a general method for the computation of the S ma­
trix in the problems where the channels can be separated into 
the closed and open ones. The weakness of the method has 
been discussed, 10 especially when it is used as a basis for the 
perturbation theory of the poles, residues, and, as we will 
show in the present work, the background term in (1.1). The 
two major difficulties are (a) the contribution of the closed 
channels are separated from the contribution of the open 

alOn leave of absence from R. Boskovic Institute, 41001 Zagreb. Croatia, 
Yugoslavia. 

hThis work was supported in part from the grant NSF F6FOO6-Y. 

channels and (b) the use of the complete set of the eigenfunc­
tions of the uncoupled channels. As the result, in the first 
case, it is not clear how to treat the resonances which are the 
true resonances in the uncoupled open channels, while in the 
second case, one has to include in the theory the channels 
which are not directly present at a particular scattering ener­
gy. More about the second point will be briefly discussed in 
the Sec. 4 of the present work. 

An alternative perturbation approach for calculating 
the poles and the residues was developed and applied to the 
Regge poles. 11 It is based on the fact that the poles of the S 
matrix are also the roots of the equation 

Det(J) = 0, (1.2) 

where J is the J ost function. In the case of the Regge poles it 
was demonstrated how the theory is applied even in the in­
stances where the Feshbach theory was criticized. In par­
ticular it was shown how the residues are calculated when 
the resonance originated as a true resonance in the uncou­
pled open channels. In the present work such resonances will 
not be treated since we will be only interested in the com­
pound state resonances, i.e., the resonances which are the 
bound states in the uncoupled channels. In Sec. 2 of the pre­
sent work we will briefly summarize the main points in the 
theory as applied to the energy poles of the S matrix, 10 

The same idea was applied to the perturbation problem 
in a single channel case. 12 It was found that the first-order 
perturbation correction agreed with the usual Rayleigh­
Schrodinger theory; however, the second-order is different 
since it does not involve the use of the complete set of eigen­
functions of the unperturbed Hamiltonian. The theory was 
generalized to the multichannel case 10 where also the degen­
erate problem was studied and it was shown explicitly where 
the advantages of the present ideas are. 

. In this work we would like to study how the theory 
gives the background term in (1.1) under the following as­
sumptions: (a) The coupling between the channels is weak 
(b) the poles represent the compound state resonances, and 
(c) the poles are not degenerate in the unperturbed Hamil­
tonian. These restrictions are not essential, except the weak 
coupling assumption, since generalization to these cases is 
straightforward. 

The derivation of the background term is not a unique 
procedure. Let us briefly discuss this point for an arbitrary 
holomorphic function/(z) with the well separated first-order 
poles. Such a function is a representative of the S-matrix 
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elements. Let us assume that some of the poles have a small 
imaginary part, much smaller than the separation between 
the neighboring poles. Therefore we can write in the neigh­
borhood of a pole 

/(z) = /3/(z - zo) + g(z), (1.3) 

where Zo is a pole of/(z). The function g(z) is now analytic in 
the circle, the radius of which is determined by the distance 
to the closest pole of zoo Hence, g(z) can be expanded in the 
circle in a Taylor series around any point. In the representa­
tion (1.1) we retain only the leading term in such an expan­
sion, which we designate by b. It is obvious that its value is 
not given uniquely and depends on the point around which 
g(z) is expanded. We must therefore impose certain condi­
tions which will give its value uniquely. For example, we can 
choose that the difference 

.1 = /(z) - /3 I(z - zo) - b (1.4) 

is minimal on the real axis of z. In particular we can assume 
that 

l
Rez,,+l5 

1.1 12 dx = min, 
Rezo - 0 

( 1.5) 

where the variable of variation is b. The last c('ndition is 
equivalent to the equation 

l Re z" + 6( /3 ) 
/(x) - -- dx = bO, 

Rezo - f> X - Zo 
( 1.6) 

where () is the interval on the real axis around Re Zo in which 
(1.4) is the best representation of the S matrix. In practice 
solving (1.6) is not straightforward. Therefore, we will as­
sume that the point of expansion of g(z) coincides with zo, in 
which case the formalism greatly simplifies. However, we 
should have in mind that this may not be the best choice for 
b, as we have shown in the preceding discussion. 

2. PERTURBATION THEORY FOR THE POLES AND 
RESIDUES 

In this section we will briefly review the perturbation 
theory of the poles and residues of the S matrix based on the 
J ost function formalism. 10 Let the set of equations describing 
inelastic processes involving n channels in the matrix nota­
tion be 

(2.1) 

whereK ~ = k 2 - E; and Vis the n X n potential matrix. Let 
us assume that the first 0 channels correspond to the open 
channels and the subsequent C channels to the closed chan­
nels, i.e., 

K~>O, i= 1,2,3, ... ,0, 

(2.2) 

K~<O, i = 0 + 1, ... ,n. 

Let us also assume that the off-diagonal elements of Vare 
small compared to the diagonal ones, hence they can be 
treated as a perturbation 

V = Vo + EV', (2.3) 

where V' is zero on the diagonal. In such a case the regular 
solution of (2.1) is given in the form of the integral equation 
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¢ = ¢o + ~ K -I r G (r, r')V'(r')¢(r')dr', 
21 Jo (2.4) 

where 

(2.5) 
where ¢o and/o± are the regular and irregular solutions of 
(2.1), respectively, when E = O. The regular solution is de­
fined with the boundary condition 

¢o-o, r-o, 
and the irregular 

/ l (r) - exp( + iKr), r-+ 00 • 

The Jost function is then l.l 

J = Jo - --: K -I dr /0- (r) V'(r) ¢(r), E l'" 
21 0 

and the roots of the equation 

F= Det(J) = 0 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

in the variable k give the poles of the S matrix, which are 
interpreted as the bound states and resonances of the system. 
Approximate solutions of(2.9) are obtained if we set E = 0, in 
which case 

(2.10) 

wherei k are the diagonal elements of Jo. Therefore, the set of 
the poles of the S matrix correspond in the zeroth order of E 

to the set of poles in the uncoupled channels. In our treat­
ment we will assume that the set of poles, obtained from 
(2.10), are not degenerate, i.e., the poles from different chan­
nels are not equal. 

Let us designate by K one of the roots of (2.9). Since F is 
also a function of E, we can expand K in the power series 

K(E) = ko + Ekl + ~ E2k 2 + "', (2.11) 

where ko is a solution of(2.1O). For simplicity we will assume 
that ko represents a bound state in the pth closed channel. 
This restriction is not essential since the perturbation theory 
of resonances can be equally applied to the resonances in the 
uncoupled channels. However, a bound state in the uncou­
pled channels produces the Feshbach type resonance and 
they are by far more important in the study of inelastic colli­
sion processes than the shape resonances, how the other type 
is usually referred to. 

As was shown, the coefficients in (2.11) are to 

kl=O (2.12) 

and 

n 1 
k2= - I --

2Kpi;i: ,= I#p K,i, 

X (L'" ¢p Vp,¢, dr 1'" /-(r')V'p(r') ¢p(r') dr' 

+ i oc 

dr ¢p Vpti,- J: dr' ¢,(r')V,p (r')¢p (r')). 

(2.13) 

where the wave functions correspond to the unperturbed so­
lutions of (2.1). The unperturbed Jost functions in (2.13) are 
defined from the asymptotic form of the regular solution ¢o 
in the I th channel, 
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tPl-J/ exp(iK,r) + JI exp( - iKlr), r-oo, (2.14) 

andJ; is defined as 

d' ., lp 
lp = dk . (2.15) 

Similarly the residues of the S matrix can be calculated 
using the perturbation theory. It was shown 10 that for the S­
matrix element Sm,n' corresponding to the open channels, 
the appropriate residue has the parametrization 

lim(k - K)Sm,n = (13m 13n )1/2 
k 'K 

and that 13m and 13n have the expansion 

13m = 13~) + E 13 t;,,1 + 1 E2 13 ~I + ... , 

It turns out that 

13~1 =13t;,,1 = ° 
and 

(2.16) 

(2,17) 

(2.18) 

2KmJ~ l-;-l-';-K-p (i
OO 

drtPmVmptPpy. 

(2,19) 

where again tPm and tPp refer to the unperturbed regularsolu­
tions of (2.1). 

3. PERTURBATION EXPANSION OF BACKGROUND 
TERM 

Near a resonance the S matrix has a parametrization in 
the form, as first given by Breit and Wigner, 

S _ (/3m /3n)1I2 + b 
m.n k _ K m,n' 

(3.1) 

where bm.n is the background term, We have shown in the 
previous section how to obtain K and 13 in the form of a per­
turbation expansion in E, defined in (2.3), We will now show 
that b m,n can also be obtained in an analogous manner. To do 
this, let us recall a useful representation of the S matrix in 
terms of the functions F, defined in (2.9). For the elastic 
channels we have 14 

(3.2) 

where -Km means that the channel wavenumberKm inFis 
replaced by its negative value. Near a pole we can write 

(3.3) 

where the index of F designates the derivative with respect to 
k at the pole K. Therefore the background term bm,m is given 
by 

(3.4) 

To obtain the elastic background term as a power series 
in E, let us first calculate F, in the form 

aF 
- F = FIOI + EFIII + 1 E2F(2) + 0 (~) (3.5) ak I I I 2 I , 
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where the terms of higher order than E2 are neglected, Since 
F is a determinant of the matrix J we have 

FI = i Det Iml(J) = i (Det bm'iJ) 
m= I m= I 

+ Det ~ml(J) + ~12 Det im'iJ)), (3.6) 

where Det Iml designates the derivative of the mth column of 
J. If m =/= p, where p is the index of the pth closed channel for 
which 

Jp =0, 

we easily find 

Det bm'iJ) = Det Ilml(J) = 0, 

where we have taken into account that 

JP - (K - ko)j; - ~ E2k 2J; + 0 (E
3

), 

where k2 is given by (2.13). It follows that 

Det hm'iJ) 

j " (Jill JlIi J<l11 J(ll ) = 2P ( .) ~ pm mp _ pm mp , 
1 .. ., 

1m 1m 1m 

where 

P(j) = Ill. 
i",p 

and 

(3.7) 

(3.8) 

(3.9) 

m =/=p, 

(3.10) 

(3.11) 

(3.12) 

When p = m, the derivative of the pth column will give 
for the diagonal (p,p) element of J 

J' -1" + I ~(k l' u +J'(21) + O(~)· pp p i 2 p pp , (3.13) 

hence, 

Det~'iJ)=j;P(j), Det~'iJ)=O, (3.14) 

and 

Det ~'iJ) = P (j{ k 2J; + J ;121 

+ ~ G'; JI21_~JdIIJIII L.. . /I • Ip pi 
1=I",p I 11 

-2'J" ,,_I_Jl I IJI II)) (3.15) P £.. " 1m ml , 
m>l",plLlm 

where 

1 i oo 

n V i' J~lm = -- dr f;;; L ~ Gi(r, r') Vim tPm dr' 
2Km 0 i= I k i 0 

(3.16) 

which was obtained from (2.8) as the second iteration. We 
should recall that F( - Km) is obtained from (3.6) by replac­
ing Km with - Km in Eqs. (3.10), (3.14), and (3.15). In such a 
case we have for the ratio F ,( - Km )IF,, 
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x (1"0 drrPmVmprPp ff/VpmrPmdr' 

+ 1"0 rPmvmpf/ dr fO rPpVpmrPm dr') 

+ So'" rPm VmlrPl dr LX> fl- Vim rPm dr'))' 

(3.17) 

To obtain bm,m we still require the ratioF2/F •. Sincefim 
is of the order 0 (~) we have to calculate F2/ F. only to the 
zeroth order in c. Hence 

(3.18) 

and bm,m is 

Let us now turn our attention to the inelastic back­
ground term bm •n • From the representation of the inelasticS­
matrix elements· 4 

Near the pole we can write approximately 

S2 _ fim fin _1_( a b a b 
m,n - (k _ K)2 + k _ K Pn m,m + Pm n,n 
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(3.21) 

where we have used (3.4) and the definition of the residue. 
We have shown that the elastic background terms can be 
written as 

(3.22) 

in which case 

F:(-K -K) 
a blO) +fi blO) _ ° m' n =O(c) (3.23) 
l.Jn m,m m n,n F

J 

if the leading term of Fo( - K m , - K n ), which is of the order 
~, is calculated by a procedure similar to calculating F •. 
Noting thatfi = 0 (~) and taking into account (3.22) we no­
tice that the only contribution of the order c comes from 
Fo( - K m , - K n ), hence (3.21) is 

S2 = fimfin __ I_(F~)(-Km'-Kn)+O(c4)) 
m.n (k _ K)2 k - K F\O) , 

(3.24) 

where the index of Fmeans that this function is calculated to 
this order in c. 

Let us briefly show how Fo( - Km, - Kn) is calculated 
to the order c3

. Since the diagonal pth element of J is zero in 
the limit c = 0 we can replace Jp,p by 

(3.25) 

(3.26) 

In the Eq. (3.25) we have used (3.9). The determinant ~is the 
same as Fo except that now the pth row and column are of the 
order co. Therefore ~ should be calculated to the order c, 
hence F~) in (3.24) is 

F (3)(-K -K )=!!..F(-K -K), o m' n dE - m' n 
(3.27) 

where the derivative is calculated for c = O. The calculation 
of (3.27) is straightforward, although lengthy and we will 
only give the final result. 

(3.28) 
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where we have used the notation 

(3.29) 

and 

( t{lp III t{lm) 

= L"" dr t{lp Vpl f" dr'll- (r> ) t{l1(r < ) Vim t{lm' (3.30) 

In the derivation of(3.28) we have also used the expres­
sion for k3 in (3.25) and in the Appendix we show how it is 
calculated. 

We can now calculate the inelastic background term. 
From (3.24) we obtain 

S _ m n l-(k-K) 0- m'- n '(3.31) ( f3 f3 )1/2 [ F(31( K K )]112 

m,n k - K F\OI f3
m 

f3n ' 

hence, 

1 F~I(-Km,-Kn) 

2 F\01(f3mf3n)1/2 
(3.32) 

(3.34) 

The first term in (3.34) we recognize as the ordinary 
distorted wave approximation for the scattering from the 
channel m in the channel n. The last two terms come from 
the coupling between the open channels m and n and the 
channel where the unperturbed bound state is. It should be 
pointed out that although the matrix elements (3.30) are sec­
ond order in V their overall contribution to (3.14) is first 
order since these terms are divided by V P which is first 
order in V. 

4. TWO-STATE FORMULA 

Let us apply the results to the simplest case: the two­
state problem. At the same time we will compare the ob­
tained results with the Feshbach formalism. We assume that 
the channel 1 is open and that the channel 2 is closed. There­
fore there is only elastic collision in channell, with the possi­
bility of the internal excitations in channel 2. The second­
order correction to the resonance level, if the pth bound state 
of the channel 2 is excited, is now 
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k2= - ----------
2K2Kdtf2 i2+ 

x( 1'0 t{l2 V21 t{ll dr f"" 11- V12 t{l2 dr' 

+ i"" drt{l2 V2tfl- f dr' t{l IVI2 t{l2). (4.1) 

and the residue is 

PI = - 2K K \ 'f .+ ( (OOO dr t{ll V12 t{l2)2. (4.2) 
I 2ft 1212 Jo 

The results are in close analogy with the expression obtained 
from the Feshbach theory. IS However, this is to be expected 
since the difference between the two approaches becomes 
evident when the complete set of the functions is introduced, 
and for the derivation of (4.1) and (4.2) such a set was not 
necessary. For example, when the present theory is applied 
to the ordinary perturbation problem in a one channel case, 
then the first-order correction to any bound state (or a reso­
nance) is given in the form similar to a known expression in 
the Rayleigh-Schrodinger perturbation theory. 12 However, 
the second-order correction in the RS theory is given as the 
sum over the complete set of eigenfunctions of the unper­
turbed Hamiltonian, but within the present theory this sum 
is replaced by an expression involving only the state which is 
being perturbed. 

In the derivation of(4.1) and (4.2) we did not require the 
use of the complete set of the unperturbed eigenfunctions, 
hence, the results of the two procedures are similar. (The 
only difference is that in the Feshbach formalism one makes 
perturbation expansion of energy while here we expand the 
wavenumber.) The difference between the two approaches 
becomes evident if the degenerate case is treated 10 or if high­
er-order corrections to the resonance level are calculated. 

Let us now turn our attention to the background term. 
For a two-level system the formula (3.19) becomes 

it il+ 
bl,l = -.- - -.-

JI JI 

X - 2 dr 12- V2 It{I I [a ( r (S"" )2) 
ak 4KIK 2i;ili,+ 0 

+ 1 ({OO dr t{ll VI2t{12 r 12+ V2I t{lI dr' 
4KIK 2g iliI+ Jo Jo 

roo f"" ) f ] + Jo t{ll V12 /2+ dr r t{l2 V2I t{lI dr' + PI iI~ . 

(4.3) 

The first term we recognize as the unperturbed S matrix 
in the channel 1. The second term is a correction to the elas­
tic S matrix, coming from the interaction with channel 2, 
This term can now be compared with the analog in the Fesh­
bach formalism. We find that the Feshbach form of bI,I' if 
the relevant equations are solved in the first-order distorted 
wave approximation 15 looks like 

b - it _ ~ f ( t{lI!VnI t{lj)f (4.4) 
1.1 • L.J k 2 k 2 ' JI j".p - j 

where the sum/integral extends over the complete set of the 
functions of the channel 2. Hence the formula (4.4) involves 
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the use of the complete set of functions for the background 
term, which in Eq. (4.3) is not necessary. The sum in (4.4) is 
essentially replaced by a term which involves taking the de­
rivatives of the unperturbed solutions with respect to k. 
Since it is not obvious how these derivatives can be calculat­
ed, we will briefly discuss the properties of the solutions of 
the one channel problem. 

5. DISCUSSION 

In the expressions for the perturbation coefficients of 
the poles, residues, and the background term, it is assumed 
that we know the complete solution of the unperturbed Ha­
miltonian. By complete, we understand that we know the 
regular and irregular solutions together with the Jost func­
tions and their derivatives with respect to k. Therefore it 
would be appropriate to review some of the properties of the 
solutions of the radial Schrodinger equation 

(5.1) 

which is a representative of the uncoupled set of equations 
(2.1). The channel energy is here represented with k 2. How­
ever, we should first recall that the derivatives with respect 
to k of the Jost functions and the matrix elements in Eq. 
(3.17) are not the derivatives with respect to the channel wa­
venumbers in (2.1). Therefore, we should transform d / dk in 
these cases by 

d dKn d k d 
-=----=---
dk dk dKn Kn dKn 

(5.2) 

in a particular channel n. In what follows we will assume 
derivatives with respect to the channel wavenumber k in 
(5.1) which must not be confused with k in (5.2). 

Let us restrict our discussion of (5.1) to a particular set 
of potentials which occur in atomic collisions. However, the 
theory is of general validity, and for the potentials other than 
those discussed here, one should appropriately modify the 
relevant steps. 

A typical potential in atomic collisions has a hard core l6 

of the type 

lim VIr) = VIR ), (5.3) 
r .R 

while for r < R, VIr) is infinite. In such a case the regular 
solution of (5.1) is defined with the initial values 

tP(R ) = 0, tP'(R) = 1. (5.4) 

On the other hand, the two irregular solutionsf ± , defined as 

lim f ± (r) = exp( + ikr) (5.5) 
r • 00 

are finite in the limit r-+R. From the definition of the Jost 
functions, 17 

j ± = (1/2ik )( tP j' ± - tP'f ± ), 

we obtain 

(5.6) 

(5.7) 

When k 2 is positive, i.e., k 2 correspond to an open chan­
nel, we can easily find the relevant quantities entering the 
expression for the background term (3.17). For example, the 
derivative of the wavefunction with respect to k satisfies the 
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differential equation 

¢" = - 2ktP + (V - k 2) ¢, (5.8) 

where ¢=dtP/dk. The regular solution of(5.8) is 

¢ = J: G(r, r') tP(r') dr', (5.9) 

where G (r, r') is given by (2.5). The derivatives of the Jost 
functions with respect to k can be calculated from (5.6) and 
they are 

j± = - (k -I ± ir)j± - (exp( + ikr)l2ik) 
X ( ± itP ± ik¢ + ¢'), (5.10) 

where we have taken the limit r-+ 00. Therefore, in principle 
when k 2 > 0 there is no basic difficulty in obtaining all the 
relevant quantities entering the background term. 

It is not at all evident that this is the case for the bound 
states, and this point needs little more discussion. Let us 
therefore assume that k 2 < 0, and its value corresponds to 
one of the bound states of (5.1). In such a case we can find a 
useful expression which relates the Jost functions to the nor­
malization constant of the regular wavefunction. Multiply­
ing (5.8) with tP and (5.1) with ¢, and subtracting these two 
equations, we obtain 

!!..- (¢tP' - ¢' tP) = 2ktP2. 
dr 

(5.11) 

Integrating the equation and using the relationship 

tP=rf- +Ff+, (5.12) 

we obtain the well-known relationship l7 

lj-r = Loo tP2 dr. (5.13) 

The last formula means that if we know tP andj- then 
r can also be obtained. This fact will be useful a little later. 
However, let us discussF. From (5.6) we obtain in the limit 
r-+oo, 

F = (exp(ikr)l2ik )(iktP - tP'), (5.14) 

where it is assumed that k is positive imaginary. In general, 
when k is not a bound-state wavenumber, the regular wave­
function will exponentially increase for large r as tP 
- exp( - ikr), hence, no significant figures in the bracket of 
(5.14) will cancel, which means numerical stability. This also 
means thatj- can be calculated to any arbitrary accuracy, 
without too much numerical difficulty. Since this is the case, 
then alsoj- andj- can be calculated from (5.10) without too 
much difficulty. 

Similarly, we can show thatf- can be calculated from 
(5.1) by the backward integration and the procedure is nu­
merically stable. Therefore, from now on we assume thatj- , 
f - , and tP are known functions for the bound states. 

That the same procedure does not apply forj+ can easi­
ly be verified by calculating (5.6) for r-+oo. In such a case we 
have 

r = (exp( - ikr)/2ik)( - iktP - tP'), (5.15) 

and since tP-exp( - ikr), when k is not at the bound state, 
the significant figures in (5.15) will cancel. This means that 
j+ cannot be calculated from (5.15). However, we can use 
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(5.13) to obtainr and sincej- and t/J are known, which was 
shown earlier, the procedure is numerically stable. 

We still needj+, which cannot be obtained from (5.13) 
since this expression holds only for the bound states and is 
not valid in its small neighborhood. Therefore, we should 
look for a different way to calculate j+. Let us differentiate 
(5.12) with respect to k, and use (5.9) for If, hence, 

j+f- + rj- = i E G(r, r') ¢(r') dr' - j-f+, (5.16) 

and if we use (2.5), 

j+f- +rj- = if- Ef+ ¢dr' -if+ Ef- ¢dr' 

- j-f+. (5.17) 

In the limit r--+oo we can show, using (5.13), that the second 
and the third term cancel even thoughf+ is an exponentially 
increasing function. Hence we are left with 

j+ + ir r = i E f+(r') ¢(r') dr', r--+oo (5.18) 

or 

j+ = ij+ lim (Ir 

f+f- dr' - r), 
r_oo R 

(5.19) 

which relatesj+ toj+ and the irregular solutionsf+ andf-. 
It can be easily shown that the procedure (5.19) is numerical­
ly stable. 

However, for the calculation ofj+ we needf + (r), but the 
analysis shows that it is not possible to obtainf+(r) from the 
straightforward integration of(5.1). The reason is simple:f+ 
is an exponentially increasing function and is not uniquely 
defined by the boundary condition (5.5). We can nevertheless 
obtainf+ up to an undetermined constant by starting from 
the Wronskian 

(5.20) 

and if this expression is treated as the first-order nonhomo­
geneous equation for f+, the solution is 

(5.21) 

where C is a constant determined at the lower bound. Since k 
corresponds to a bound state andf- -¢, the integrand is 
singular at r = R and any node of t/J. 

Using (5.4) and (5.1) it can be shown that near r = R the 
regular wavefunction has expansion 

t/J(r)-.d + 0 (.d 3), .d = r - R. (5.22) 

Similarly, near any node of t/J we have 

¢(r)-¢'(rn).d n +O(.d!), .d n =r-Rn' (5.23) 

where Rn is the nth node of ¢. Let us now write for C 

C-2.k( .+)2( 1 + ~ 1 1) 
- I } X _ R n~l X - Rn (¢'(RnW ' 

(5.24) 

whereNisthe number of the nodes of¢. Thesolutionf+ now 
reads 

f + 2·k .+,''[ 1 ~ 1 1 Ird' = - I) 'I' --+ £.... -----+ r 
r - R n ~ 1 r - Rn (¢~)2 R 
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X Cr' ~ R )2 + ntl (r' _lR")2 (¢~ )2 - ¢-2) l 
(5.25) 

where we have replaced x by R. It can easily be shown that 
f+ satisfies (5.1). We can also show that in the limit r--+R the 
value off + is 

(5.26) 

which is equal to (5.7). Therefore (5.25) indeed represents the 
solutionf+ for the bound states. However, we can also show 
that any function 

(5.27) 

wheref+ is defined in (5.25) and C is an arbitrary constant, 
also satisfies the just mentioned conditions. Hence, F + is 
also the irregular solution of (5.1), satisfying the boundary 
condition (5.5). However, the background term (3.17) is in­
variant to the transformation (5.27), which can be proved by 
noting thatj+ transforms as 

r--+r-crj-, (5.28) 

in which case all the elements in (3.17) containing C will 
cancel. 

In fact the whole perturbation theory is invariant to the 
transformation (5.27), regardless of whether k belongs to the 
bound state or not. This comes out from the fact that G (r, I), 
defined by (2.5), is invariant to the transformation (5.27); 
therefore, the Jost function (2.8) is also invariant. Since the 
Jost function (2.8) is the basis of the perturbation theory, 
then also the perturbation theory is invariant to the transfor­
mation (5.27). As the conclusion we can say that (5.25) can be 
used in the calculation of the background term, although it 
does not represent the unique irregular solution of (5.1). 
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APPENDIX 

Here we will calculate the third-order correction to the 
resonance wavenumber (2.11), which is needed in the deriva­
tion of the inelastic background term b m.n in (3.34). The coef­
ficient k3 can be obtained in two ways: either by directly 
calculating d 3K/dc' for ~ = 0 from the implicit equation 
(2.9) or by calculating dK/d~ for a finite ~ and then looking 
for the coefficients in the expansion 

dK = _ aF /aF = kl + ~k2 + ~2/2k,. 
d~ a~ ak . 

(AI) 

The last procedure is sometimes more convenient and will be 
used here. Since k 1 = 0 it follows that aF / a~ is exactly zero 
for ~ = 0 hence aF /a~ starts with the order~. On the other 
hand, aF / ak is of the order ~o but the next higher is C, as was 
shown in Sec. 3. Therefore looking for k3 in (A l) is equivalent 
to finding aF / a~ to the order ~2. 

The derivative of determinant F is equal to the sum of 
determinants in which we take the derivative of each column 
separately. Therefore, if we take the derivative of the column 
m which does not correspond to the column in which the 
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diagonal element is zero in the unperturbed case (in our case 
this is the pth column), then 

aF 1ml 
- Flm l ---€ 

a€ -' 
(A2) 

where F(ml is a determinant in which the mth and the pth 
column-are of the order EO, except the elements (m,m) and 
(p, pl. These elements are 

(P,pj=1€(k 2 j; +J~) (A3) 

and 

(m, m) = d~lm' (A4) 

We now look for the contribution in Flml which is of the 
order €, and this can be obtained by calcul;ting al!...lml/a€ for 
€ = O. When this is done we find 

aFlml (J{11 J(21 J(2) J(ll 
_-__ = P(j) _ pm mp _ pm mp 

a€ 2jm jm 
J{lI.JlllJlll + Jill J1liJ{li ) 

~ ml Ip pm mp pi 1m 
+ L . 

I #p.m jm ji 
(AS) 

Similarly we can calculate (AS) when m = p. In such a case 
we find 

aFlpl (J131 J{ll JI21 
--=P(j) ~ - I p~ mp 

a€ 2 m#p Jm 

I Jill JI21 __ I mp pm 

2 m#p jm 
J(llJlll JIll. ) + I I lp . p~ ml . 

i#p m#p,i hJm 

Therefore we now have 

aF JFlm) 
a;=€2 ~a;-' 

Since JF I Jk is 

JF = "P(') 
Jk Jp J, 

the third-order coefficient k3 is from (A I), 
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(A6) 

(A7) 

(A8) 

(A9) 

The expression for k3 can be much simplified if we use the 
explicit forms of the matrix elements in (A9). For example 
J ~l~ is given by (3.12). The higher-order elements are ob­
tained by iterating Eq. (2.4) and putting the series in (2.8). 
After some algebra, when the following form of the Green's 
function (2.5) is used, 

G(r, r') = (¢(r')j-(r) - ¢(r)j-(r'))lj, 

we obtain the final form of k3' 

3 I l'" k,,= --.--., I .. dr 
4lKpJp m.k KmKkJmh 0 

xj p- Vpm LX> dr' j;;; (r> ) ¢ m (r < )Vmdr') 

xl'" dr
n 
jk (r~ )¢dr~ )Vkp(rn) ¢p(rn). 
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In inverse scattering theory, algorithms for solving the Gel'fand-Levitan equation normally 
break down when poles in the reflection coefficient coincide. Here we present a method for 
treating an arbitrary number of coinciding poles. We give the first explicit solutions for 3, 4, 5,6, 8, 
and 10 poles. 

P ACS numbers: 03.80. + r, 94.20. - y 

1. INTRODUCTION 

The Abel integral equation has been the basis for most 
work on ionospheric structure determination during the last 
half century. Using this approximate method, ionospheric 
electron densities have been computed from scattering data. 
With the same data it is possible to employ an exact full-wave 
method, based on the Gel'fand-Levitan equation, I to obtain 
a much improved determination of the ionospheric electron 
density. Since the data used is identical for the approximate 
and full-wave theories, there is no need to modify experimen­
tal equipment; the difference in treatment is essentially 
computational. 

In principle, the full-wave inverse scattering method is 
exact. However, in practice, approximate analytic or nu­
merical methods are normally employed to solve the 
Gel'fand-Levitan equation. To circumvent the possibility of 
round-off errors, numerical instabilities, etc., in solving the 
Gel'fand-Levitan equation numerically, we have solved the 
equation exactly, using a generalization ofKay's2 procedure 
for rational function reflection coefficients. Previous at­
tempts along these lines have given usable results when the 
number of poles in the reflection coefficient is not too large (3 
poles3

; 1 pole4
; 3 poles5

; 1,2, and 3 poles6
), 

In previous communications 7.8 we presented a general­
ized procedure for finding exact solutions to the Gel'fand­
Levitan equation in inverse scattering theory. Our procedure 
is applicable to the case in which the reflection coefficient 
r(k) is a rational function of the wave number k. Using our 
procedure, we can calculate the scattering kernel K (x,f ) from 
r(k ), and we obtain the potential V (x), which is related to the 
scattering kernel by the equation 

V(x)=2~K(x,x). (1) 
dx 

One step in the procedure involves the solution of n simulta­
neous linear equations (with complex coefficients), where n is 
the number of poles of r(k ). (There is one set of n simulta­
neous equations for each value of the distance x.) The proce­
dure breaks down whenever two or more poles coincide, be­
cause then the corresponding rows of the determinant of the 
coefficients are equal, so the determinant is zero, for all val­
ues of x. Here we present a modified procedure which over­
comes this difficulty. 

2. GEL'FAND-LEVITAN EQUATION 

In this section we solve the Gel'fand-Levitan equation 
for the case 

r(k) = const/(k - klr, (2) 

in which there are n coinciding poles. Because of the require­
mene that r(0) = - 1, the constant in Eq. (2) must be 
- ( - kdn

• Thus we have 

r(k) = - ( - kdn/(k - kdn. (3) 

The additional requiremene·9 that r*(k ) = r( - k) (for all 
real k) forces kl to be purely imaginary. With these two con­
ditions satisfied, it is automatically true that I r(k ) I..;; 1 for all 
real k, another necessary property2.3 of the reflection coeffi­
cient. Finally, kl must be in the lower half-plane, because we 
assume that r(k ) is analytic2.9 for all k in the upper half-plane. 

As in Refs. 7 and 8, we begin with the Gel'fand-Levitan 
equation 

R (x + f) + K(x,f) + J: 00 K(x,z)R (z + f)dz = 0, (4) 

which can be rewritten as 

RI(X+f)+KI(x,t)+ J:,KI(X,z)RI(Z+f)dZ=O, (5) 

where 

R (x) = RI(x)8(x) 

and 

K(x,f) =KI(x,t)8(x + f). 
We again let 

R (x) = _1_ f"" e - ikxr(k ) dk. 
21T - "" 

Substituting (3) into (8), and using (6), we find that 

R I(X) = Bxn - Ie - ik,x, 

where 

B = - (iklr/(n - I)! 

As in Refs. 7 and 8, we assume 

a 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

where the summation is over integer values of a from 1 to n 
and from - 1 to - n; that is, the summation is over 2n 
values ofa. 

We now substitute (9) and (11) into (5). The result may 
be written in the form 

E+F+J=O, 

in which 

(12) 
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and 

a 

(13) 

(14) 

J= f:t~fa(X)eaazB(Z+tr-Ie-ik"Z+t'dZ. (15) 

To evaluate the integral in (15), we make the substitution 
y = Z + t and use the fact that 

fy"-lebYdY= i (-I)'+lb -, (n -I)! y"-'ebY.(I6) 
,= 1 (n - r)! 

We find that 

J=C+D, 

where 

C = BI{ia(x)e-a"t(n - I)! 
a 

x[i (_1)'.+1, (x+t)"~' e1a"-ik'IIX+tl]} 
,= 1 (aa - lk l ) (n - r). 

(17) 

and (18) 

D = - BIfa(x)e- aat ( - Ir + 1 (n - I)!(au - ikd -no 

u 

From (12) and (17), we have 

C+D+E+F=O. 

We shall show that there is a solution to (20) for which 
C + E = ° and D + F = ° simultaneously. 

(19) 

(20) 

Ifwe set a _ a = - au in the equation D + F = 0, the 
equation becomes 

I [fu(x)eaa' + (ikd" f _ u(x)e
a
", ( (- 1)"~; r] = 0. 

a - aa -I 1 

Equation (21) will certainly be satisfied if we let 

fa (x) + (ikd"( - 1)n+ 1 f _ a(x) = ° 
( - aa - ikd" 

for all a. Thus, 

f_a(x)=(1 +aa/ik,l"fa(x) 

and 

(21) 

(22) 

(23) 

(24) 

for all a. Equations (23) and (24) are consistent [for nonzero 
fa (x)] only if 

kI2"/(au 2 + k 1
2}" = 1. 

Solving for au 2 in (25), we obtain 

aa 2 = k 1
2(j3 -m - 1), 

where 

f3 = exp(21Ti/n) 

(25) 

(26) 

(27) 

and m takes on the integer values from 1 to n. Thus, we may 
let aa and a _ u be the two square roots of k 12(j3 - a_I), for 
positive a. 

Turning now to the equation C + E = 0, we rewrite it 
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FIG. I. Potential V(x) vsdistancex for 3, 4,5,6,8, and 10 coinciding poles. 
All poles are at - i. In this and all other graphs, the potential is zero for 
negativex. 

in the form 

x {i (- 1)'.+ I(~ - 1)" ["I' (n ~ r)X"_'-St s]}) 
,= 1 (aa -Ik l ) (n - r). s=o 

=0. (28) 

The left side of Eq. (28) is a power series in t in which the 
coefficients are functions of x. Equation (28) is satisfied only 
if each coefficient is zero. For each power of t, this condition 
may be written as 

x" - s - I + I {/, (x )eaa x -'('-----'-1 }"_-_s _-_I 

(n-s-I)! a a (aa-ikd"-S 

x["-i- I 

[(ik,-~a)XF]} =0, 
q=O q. 

(29) 

which must be satisfied for s = 0, 1, 2, ... ,n - 1. 
Using (23), we rewrite (29) in the form 

n x"-j 
L Mju(x)fa(x) = --. I' 

u= I (n - J). 
(30) 

i = 1,2, 3, ... ,n, where 

1.0 3· 
I 

~ 0.8 
~ LOCATIONS OF 
>- MAXIMA 
-.J 0.6 4. -« 
i= 
z 

0.4 5· w .-
6· ~ 

0.2 8. 
10. 

0 
0 1.0 2.0 3.0 

DISTANCE ,x 

FIG. 2. Locations of maxima in potential vs distance graphs. Numbers 
represent the number of coinciding poles. All poles are at - i. 
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FIG. 3. Potential V(x) vs distance x for 3 coinciding poles at - i. 

(31) 

Equation (30) is a set of n simultaneous linear equations in n 
unknowns-the functions fa (x). (That is, there is a set of n 
equations for each value of x.) The matrix Mja is different 
from the matrix which would have been obtained using our 
original procedure.7

•
8 The determinant of Mja is nonzero. 

After we have calculated thefa (x) for a set of values of x, 
we calculate K1(x,x), which is given by 

K1(x,x) = i fa (x) [ea,.x + (1- iaalk1te-a,.xl (32) 
a=l 

Equation (32) was derived by substituting (23) into (11). 
The potential V(x) is found from K (x,x) using Equation 

(1). We have plotted graphs of Vvsx for different values ofn, 
all with k 1 = - i. There is no loss of generality in restricting 
k 1 to be - ibecause mUltiplying k 1 by a positive real number 
only changes the scale. If t is a positive real number, then 
from Eq. (26), 

aa(tk.) = Saa(k l)· (33) 

That is, when we multiply k 1 by a constant, the aa are multi­
plied by the same constant. (Here and in what follows we 
have inserted additional arguments into aa ,Mja , and other 
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FIG. 4. Potential V(x) vs distance x for 4 coinciding poles at - i. 
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quantities to indicate the dependence on k I') By substituting 
Eq. (33) into (31) we deduce that 

Mju(xIS,Sk.) = S - n +j- IMja(x,k l). (34) 

Then, using Eqs. (30) and (34), we obtain 

fa (xlt,sk.) = Sfa(x,k.). 

It follows from Eqs. (32) and (35) that 

KI(xls,xls,Skl) = tkl(x,x,k l)· 

Because the potential V involves a derivative of K, 

V(xls,xls,Skl) = t 2 V(x,x,k.). 

(35) 

(36) 

(37) 

In other words, if the poles move farther away from the ori­
gin by a factor of S, then the peak in the potential becomes 
higher by a factor of S 2 and moves to a value of x which is 
smaller by a factor of S. 

3. RESULTS 

In Fig. 1 we have plotted the potential versus distance 
for n = 3,4,5,6, 8, and 10, all with kl = - i. In each case 
the potential is zero for all negative x, as can be seen from 
Eqs. (1) and (7). The potential rises to a maximum at a posi­
tive value ofx and then decreases. As n increases, the peak in 
the potential moves downward and to larger x values. This 
can be seen more clearly in Fig. 2, which shows the position 
of the maximum for n = 3, 4, 5, 6, 8, and 10. 

In Fig. 1, all curves are drawn to the same scale and thus 
can be directly compared. However, the scale chosen, al-

0.4 

>< 
:;;0.3 
....J 
<:( 

~ 0.2 z w 

~ 0.1 

POTENTIAL vs DISTANCE 

OL-L-_---J~ __ ___I~ __ --1 ___ __I 

o 1.0 2.0 3.0 

DISTANCE,x 
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though appropriate for the smaller values of n, is less advan­
tageous for the larger values of n. Therefore, we have plotted 
the individual curves to more appropriate scales in Figures 
3-8. Note that with increasing n, the curves rise more and 
more slowly as x increases from zero. 

In graphs of potential V vs distance x for n coinciding 
poles at k. = - i, the value of x at which V is a maximum 
depends on n. (We let Xo denote this value of x.) By altering 
the position of the poles, we can change Xo to any positive 
value. For 3 poles at k. = - i, Xo = 0.33, but if 
k. = - 0.33i, Xo = 1. For the 6-pole case, Xo = 1.57 if 
k. = - i, while Xo = 1 if k. = - 1.57i. For 10 coinciding 
poles, Xo = 3.325 if k. = - i, while Xo = 1 if k. = - 3.325i. 
Figure 9 shows 3-, 6-, and lO-pole cases, all with Xo = 1. 

In Fig. 10 we have plotted a 3-pole case with Xo = 1 and 
a lO-pole case with Xo = 3. (For the lO-pole case, 
k. = - 1.1083i.) 

We also considered the effect on the potential of start­
ing with the case of 3 coinciding poles, all at - i, and then 
moving the poles slightly apart. Specifically, we considered 

r(k) = k.k2k 3 
(k - k.)(k - k2)(k - k3) 

Case (a): k. = k2 = k3 = - i. 

Case (b): k. = - 0.999i, k2 = - i, k3 = - 1.001i. 

Case (c): k. = - 0.99i, k2 = - i, k3 = - 1.01i. 

For case (a), we used the new procedure described in this 
paper. For cases (b) and (c), we used the procedure described 
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in our previous communications. 7
•
8 The results were that for 

the same values of x, the differences between the potentials in 
cases (a) and (b) were at most in the 5th significant digit. The 
differences between cases (a) and (c) were at most in the 4th 
significant digit. [If cases (b) and (c) were plotted to the same 
scale as case (a) in Fig. 3, the differences between (a), (b), and 
(c) would not be observable.] Thus in this case the procedure 
is stable. 

4. DISCUSSION 

In this communication we have presented a new in­
verse-scattering procedure for treating an arbitrarily large 
number of coinciding poles in the reflection coefficient. (In 
previous communications we treated arbitrarily large 
numbers of noncoinciding poles.) Since our procedure for 
solving the Gel'fand-Levitan equation is exact, we have cir­
cumvented the difficulties which often arise in numerical 
solutions, such as numerical instabilities and the use of ex­
cessive amounts of computer time and memory. We expect 
that our procedure will give rise to highly accurate on-line 
inverse scattering computational capability which should 
make possible improved ionosondes for ionospheric struc­
ture determination. 

~ 0.20 
>< 

> 
-.J 0.15 
<! 
i= 
z 
W 
f-
a 

0.10 

POTENTIAL 
vs 

3 ............. 
i .... 

10 

Q. 
f ...... . 

0.05 : -. 

; ............................. . 
o L-__ dL __ -L ____ L-__ ~ __ -L __ ~ 

o 2 3 4 5 

DISTANCE, x 

FIG. 10. Potential V(x) vs distance x for two coinciding-pole reflection 
coefficients: 3 poles at - 0.33i and 10 poles at - 1.1083i. Numbers repre­
sent the number of coinciding poles. 

K. R. Pechenick and J. M. Cohen 118 



                                                                                                                                    

ACKNOWLEDGMENTS 

One of us (I.M.C.) is indebted to Dr. Angelo 1. Skala­
furis for his hospitality at the Mathematics Research Center, 
where this work was begun. In addition, we would like to 
thank Prof. Peter Lax for his hospitality at the Courant Insti­
tute of Mathematical Sciences, and for emphasizing the im­
portance of this work. 

This work was supported in part by a grant from the Air 
Force Office of Scientific Research and in part by the Na­
tional Science Foundation. 

119 J. Math. Phys .• Vol. 24. NO.1. January 1983 

'M. Gel'fand and B. M. Levitan, Izv. Akad. Nauk SSSR, Ser. Math. 15, 309 
(1951), Am. Math. Soc. Transl. 1,253 (1955). 

2Irvin Kay, Commun. Pure Appl. Math. 13, 371 (1960). 
'Saeyoung Ahn and Arthur K. Jordan, IEEE Trans. Antennas Propag. 24, 
879 (1976). 

4H. E. Moses, Stud. Appl. Math. 60, 177 (1979). 
'H. E. Moses (unpublished). 
oK. R. Pechenick and J. M. Cohen. University of Pennsylvania Report 
(1980). 

7K. R. Pechenick and J. M. Cohen, Phys. Lett A 82, 156 (1981). 
"K. R. Pechenick and J. M. Cohen. J. Math. Phys. 22,1513 (1981). 
"I. Kay and H. E. Moses, Nuovo Cimento 3,276 (1956). 

K. R. Pechenick and J. M. Cohen 119 



                                                                                                                                    

120,124 

A constructive approach to bundles of geometric objects on a differentiable 
manifolda) 

M. Ferraris and M. Francaviglia 
lstituto di Fisica Matematica "J. -L. Lagrange, " Universitd di Torino, Via C. Alberto la, 10123, Torino, Italy 

C. Reina 
lstituto di Fisica, Universitd di Milano, Via Celoria 16, 20133, Milano, Italy 

(Received 17 August 1981; accepted for publication 23 December 1981) 

A constructive approach to bundles of geometric objects of finite rank on a differentiable manifold 
is proposed, whereby the standard techniques of fiber bundle theory are extensively used. Both the 
point of view of transition functions (here directly constructed from the jets of local 
diffeomorphisms of the basis manifold) and that of principal fiber bundles are developed in detail. 
These, together with the absence of any reference to the current functorial approach, provide a 
natural clue from the point of view of physical applications. Several examples are discussed. In the 
last section the functorial approach is also presented in a constructive way, and the Lie derivative 
of a field of geometric objects is defined. 

P ACS numbers: 04.20. - q, 02.40. + m 

1. INTRODUCTION 

Classical tensor calculus, developed during the latter 
part of the last century by Ricci and Levi-Civita, was soon 
found to be the most appropriate formalism for studying 
local physical laws in an invariant way. After its application 
to special and general relativity, I tensor calculus became a 
common tool in mathematical physics and the main formal 
link between geometry and physics itself. 

As early as 1918 it was, however, discovered that cer­
tain local structures which are relevant both to physics and 
geometry do not have tensorial character, the most well­
known example being, of course, given by connections [Levi­
Civita (1917), la Weyl (1918)/ and Cartan (I92W]. Early at­
tempts to give definitions of "geometric objects" general 
enough to also include such nontensorial entities date back 
to the thirties [Schouten and Haantjes (1936n but a fully 
satisfactory and intrinsic definition was found only after the 
work of Nijenhuis during the fifties [Nijenhuis (1952), 5 

(1960),6 Haantjes and Laman (1953 a,b)/ and Kuiper and 
Yano (1955)8]. More recently, the matter was reconsidered 
by Salvioli (1972),9 who gave a natural and beautiful descrip­
tion grounded on a "functorial approach". 

Roughly speaking, an object defined on a differentiable 
manifold is a geometric object if we know its transformation 
law for any change oflocal coordinates. Tensors are obvious­
ly geometric objects, but of a very restricted type; their trans­
formation laws are in fact "homogeneous" and involve only 
the Jacobian matrix of the coordinate transformation. To 
allow more general objects like, for example, connections, 
higher derivatives of the coordinate transformation must be 
taken into account. 

In recent years, owing to their greater generality, geo­
metric objects other than tensors began t<' enter physical 
applications, because in many cases using objects more gen-

"'Work sponsored by C. N, R.-G, N, F. M, 

eral than tensors is essential [see, e.g., Anderson (1967), J() 

Krupka (1979a,b), II Kijowski and Tulczyjew (1978),12 Pras­
taro (1980),13 (1981),14 Modugno (1981),15 Pommaret 
(1978),16 Ferraris, and Francaviglia, and Reina (1981)17]. In 
fact, in spite of the widely known and systematic use of ten­
sorial methods in mathematical physics, restricting ones at­
tention to tensors may often turn out to be misleading. 

Motivated by physical applications we have reconsi­
dered the mathematical foundations of the theory of geomet­
ric objects, providing for them a new direct approach, which 
adapts the nice construction proposed by Haantjes and La­
man (1953a,b) to the more flexible language of differential 
geometry of fiber bundles. Our approach is less general than 
that of Salvioli because it refers explicitly to geometric ob­
jects having finite rank. However, it has the advantage of 
being constructive and able to handle in a simple, intrinsic, 
and detailed way most of the bundles of geometric objects 
which are relevant to mathematical physics. It, in fact, pro­
vides explicit constructions for the "lifting functors" of Sal­
violi's method and allows much easier calculations. 

2. FIBER BUNDLES ON MANIFOLDS 

1. Fields of geometric objects naturally arise as sections 
of suitable bundles. In the following we shall restrict our­
selves to the bundles of geometric objects having finite rank, 
because they have the property of being fiber bundles. 

Therefore, let us begin by recalling the concepts of fiber 
bundle theory we shall need later. We adopt the following 
definition. 

Definition 2.1: Let 00, IF be Coo-manifolds and G a Lie 
group. A fiber bundle over 00 (with structure group G and 
standard fiber IF) is a quintuple (B, 00, 1T; G, IF), where 1T: 

~oo is a surjective map from a differentiable manifold B 
onto 00, if the following conditions are satisfied. (i) G acts 
effectively and differentiably on IF; (ii) there exist an open 
covering {Ua } of 00 and homeomorphisms (called local tri-
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vializations) 

'Ta :1T- I(Ua )---+Ua XIF 

such that the diagram 

u-;r7aXF 

Ua 

is commutative; (iii) there exist maps 
maP:Uap = UunUp---+G (called transition functions) such 
that 

'Tu'Tp l(p, f) = (p,map(p)f) VPEU ap , fEIF. 

Remark 2.2: The transition functions above satisfy the 
compatibility relations mPa(P) = [maP(P)) -I and 
map(p)mpy(p)mya(P) = lEG, pEUanUpnU y • Therefore, they 
form a 1-cocycle with values in the sheaf of germs oflocal 
differentiable functions from 00 to G [for more details see 
Hirzebruck (1978) 18]. 

Remark 2.3: Note that given a covering I Ua J of 00 and 
a set ofG-valued transition functions maP satisfying the pro­
perties of Remark 2.2 one can construct a fiber bundle B over 
M with structure group G and standard fiber IF. We first form 
the disjoint union iii of all the sets Ua X IF. The bundle B is 
then obtained from iii by identifying the points (P!)EUa X IF 
and (p,map(p)f)EU p XIF for any a,{J andpEUap . One can 
show that such a reconstruction does not depend on the 
choice of the covering {Ua }. 

2. As examples of the preceding construction we may 
quote the following. 

Example 2.4: A Lie group acts naturally on itself on the 
left (or on the right). Therefore, one can construct fiber bun­
dles having the structure group G itself as standard fiber. 
These are called principal G-bundles and will be denoted by 
(P, 00, 1T; G). Principal G bundles may be characterized as 
follows. A quadruplet (P, 00, 1T; G) is a principal G bundle if 
and only if the following prescriptions are satisfied: (i) G is a 
Lie group, P and 00 are C 00 manifolds, and 1T: P---+M is a 
surjective map of maximal rank; (ii) there exists a right (or 
left) action R: PX G---+P ofG on P which is free [i.e., if PEP, 
gEG, and R (p,g) = P then g is the identity of G], differentia­
ble, and such that 00 = PIG [i.e., VPEP, gEG, 
1T[R (p,g)] = 1T(P)]. 

Example2.5: Let(P, 00, 1T; G) be a principal G-bundle, IF 
be a manifold, andp:G-+SO(IF) be a representation ofG into 
the group SO (IF) of diffeomorphisms of IF. According to Re­
mark 2.3 one can construct a fiber bundle (B, 00, 1T'; p(G),IF) 
by using the composition ofp with the transition functions of 
P. An alternative well-known procedure consists in taking 
the quotient of the manifold P X IF with respect to the equiv­
alence relation defined by the following group action, 
p:PXIFxG---+PXIF, induced by 

p:(p,J, g~(pg,p(g)-1)· (1) 

To this bundle we shall give the name of bundle of objects of 
type p associated with P. 

Example 2.6: In particular, whenever G admits a repre­
sentation A:G---+GL(V) in the linear group of some vector 
space V, by the same procedure we can construct bundles 
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having V as standard fiber and A (G) as structure group. 
These are called vector bundles over 00 (associated with Pl. 

Example 2. 7: Whenever G admits a representation 
a:G---+IGL (A) in the affine group of some affine space A we 
obtain affine bundles (associated with P), having A as stan­
dard fiber. Note that any vector bundle can be improperly 
considered as an affine bundle by identifying GL (V) with its 
isomorphic copy contained in IGL(V), where V is considered 
as an affine space. This procedure can be inverted, in the 
sense that given an affine bundle (B, 00, 1T; G, A) we may 
define an associated vector bundle B' having as fiber the vec­
tor space V underlying the affine fibers A of B. 

3. BUNDLES OF GEOMETRIC OBJECTS 

1. Among the fiber bundles over M with given fiber IF 
and structure group G, we shall describe here an important 
subclass, whose transition functions maP(P) are constructed 
starting only from the differentiable structure of M. This is 
the original viewpoint of Haantjes and Laman, which will 
here be briefly recalled and set up in slightly different lan­
guage, in order to prepare us for the alternative description 
which will be given later. 

Let {(Ua ,qJa)} be an atlas ofM. For any pair of overlap­
ping charts ((Ua ,qJa ),(Up,qJp)), there exists a (local) Coo 
diffeomorphism 

<PaP = qJa'qJp -1:qJp(Uap)---+qJa(Uap ) (2) 

between open subsets ofR". The local diffeomorphisms <PaP 
are usually called coordinate transformations. Our next task 
will then be to construct transition functions out of these 
local diffeomorphisms of R". 

First of all, we note that for any point PEU ap and for any 
<PaP one can construct a local diffeomorphism 4>ap(P»>fR" 
into itself such that 4> ap (P)(O) = 0, by defining 

4>ap(P):X f---+ <PaP [x + qJp(p) 1 - qJa(P) (3) 

for any xER"_such thatx + qJp (P)EqJp (U ap ). The local diffeo­
morphisms <Pa{3(P) satisfy the following conditions: 
[iP ap(P) 1 -I = iPpa (P) and iP ap (P).iPpa (P).iP era (P) = idM for 
any pEUanUpnUer • 

2. Now let 9 a(Rn) be the pseudogroup of all local dif­
feomorphisms I/' of W into itself such that I/' (0) = O. We 
remind the reader that [DI/' (0)] - I exists, where the linear 
map DI/' (O):R" -+R" denotes the derivative of I/' at O. For any 
I/'E9 a(R") we define t k( 1/') to be the Taylor expansion of I/' at 
o up to and including the order k;;,O. Two local diffeomor­
phisms 1/', I/' 'E9 a(R") are said to agree to the order k (at 0) if 
t k (I/') = t k (I/' 'I. This is obviously an equivalence relation. 
The equivalence class/(I/') may be represented as follows: 

/ (I/') = (O,DI/' (O),D 21/' (O), ... D kl/' (0)), 

where the symmetric r-linear operators D rl/' (O):(R"Y ---+R" 
denote the rth order derivatives of I/' at O. 

Let Gk (n;R) = {/ (I/' lil/'E9 o(R")} denote the quotient 
set of 9 a(R") under the above equivalence relation. It is easy 
to show that Gk(n;R) is a (real) Lie group with respect to the 
natural composition law: 

/(1/'):/(1/") = /(1/'.1/") 
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In particular, when k = 1 we recover the general linear 
group GL(n;R). 

3. Since all the local diffeomorphisms ~aP(P) defined in 
Sec. 2.1 belong to g; 0 (Rn) we may consider their k th order 
jets/(~ap(p))EGk(n;R). Then, for any Uap and any integer 
k>O we may define functions qJ ~p :Uap~G k(n;R) as follows: 

qJ~P:P-+/[~ap(P)]. (4) 

One may easily check that the functions qJ ~p defined in this 
way are C'" functions from Uap into G k(n;R). Moreover, 
they satisfy the following conditions: 

(i)[qJkap(P)] -I = qJkPa(P) 

(ii)qJkap(P)·qJkp"(P).qJk,,a(P) = 1, 

where 1 = /(idn) denotes the identity of the group Gk (n;R). 
Remark 3.1: By this last result we see that the functions 

qJ ~p may be considered as transition functions for a fiber 
bundle having structure group Gk (n;R), because they form a 
I-cocycle with values in the group Gk (n;R). 

4. Now let IF be a manifold on which a Lie group G acts 
effectively and differentiably and p: G k(n;R)~G be a group 
homomorphism onto G. Then we have maps 

t1>:{3 p 

maP:Uap ---+ Gk(n;R)---+G 

given by maP(p) = p(qJ ~p(P)), which "lift" the differentiable 
structure of Minto G-valued transition functions. From 
these data we can construct a fiber bundle B over M with 
standard fiber IF and structure group G, which will be denot­
ed by (B, M, 17"; IF, G,p). We then give the following definition: 

Definition 3.2: (B, M, 17"; IF, G,p), wherep:G k(n;R)~G, is 
called a bundle of geometric objects of type p of finite rank 
«k). 

The bundles of geometric objects defined in this way fit 
into the scheme ofSalvioli. It can be proved, in fact, that they 
satisfy all the properties listed in Saivioli (Ref. 9, p. 259). 

We remark that the definitions given by Salvioli extend 
to also cover geometric objects of infinite rank. The direct 
approach we outlined above may also be extended to this 
case by relying on suitable Frechet manifolds, i.e., by allow­
ing the use of infinite jets of mappings. 

5. We remark that, in differential geometry and in its 
recent applications to physics, a central role is played by 
principal fiber bundles and that, moreover, all fiber bundles 
can be considered as associated with some suitable principal 
fiber bundle. 

Our next task is then to show that the construction we 
outlined above is, in fact, in agreement with this spirit, in the 
sense that all the bundles of geometric objects covered by 
Definition 3.2 are associated with certain principal bundles. 
This will provide us an alternative approach to the class of 
bundles considered, which, as we shall see later, is more 
manageable for applications. 

Let us then proceed as follows. Given a C '" -manifold M 
and an integer k (1 <k < (0), for any C '" -function hEC "'(Rn, 
M), the k th order jet/(h ) of hat OERn is naturally defined by 
reverting to any local parametrization of M. We denote by 
Lk(M) the set of all thejets/(h) such that h -I exists. 
Let us now consider the quadruple 

122 J. Math. Phys., Vol. 24, No.1, January 1983 

(L k (M),M, ~;G k (n,R)), where ~: L k(M)~M is the canonical 
projection defined by ~ Uk (h )] = h (0). From the construc­
tion above, we see that there exists a canonical right-action of 
Gk (n;R) on Lk(M), which is given by 

!l(h ).l(lJI))~/(h.lJI). 

It is easy to check that this defines a principal Gk(n;R)-bundle 
over M [see Example 2.5]. 

Now let p:G k(n;R)~G be a group homomorphism and 
IF a manifold on which the Lie group G acts effectively and 
differentiably. We see immediately that the bundles of geo­
metric objects of Definition 2.3 are the bundles of type p 
associated with L kiM) in the sense of Example 2.6. Our claim 
is thence proved. 

The principal bundles L k(JW) will be called bundles of 
k th order frames on M. This terminology is motivated by the 
fact that L I(M) is isomorphic with the bundle oflinear frames 
ofM. 

4. EXAMPLES 

1. According to our previous remarks, all the bundles of 
geometric objects of types p are associated with some of the 
principal bundles Lk(M), which therefore are, in a sense, the 
prototype of such bundles. 

Note that Lk(M) is associated with Lk'(M) whenever 
k '>k, thanks to the existence ofa canonical epimorphism 
from G k '(n;R) onto G k(n;R). As a consequence, if a bundle B 
of geometric objects of type p is associated with L kIM) it is 
also associated with all principal bundles Lk'(M) with k '>k. 
The smallest integer k such that B is associated with L kIM) is 
called the rank of lB. 

Example 4.1: All the bundles of tensors over M may be 
obtained as vector bundles associated with the bundle of geo­
metric objects L I(M), by means of suitable linear representa­
tions of G l(n;R). 

For example, the tangent bundle TM is obtained from 
the canonical isomorphism i:G l(n;R)~GL(n;R) while the 
contangent bundle T·M is obtained from the inverse trans­
pose isomorphism i·:G l(n;R)~GL(n;R) defined by 

(5) 

The tensor bundles T~ (M) are then obtained by tensorizing 
the above constructions; analogously for the bundle AP (M) 
of differential p-forms. 

Example 4.2: Let det: G L (n;R)~R· be the determinant 
homomorphism. We denote by.::1 the composition.::1 = (de­
t)·i:G l(n;R)~R·. From the linear representation.::1 we can 
construct a line bundle det(M), called the determinant bun­
dle of M, whose sections are the fields of n-vectors on M. 
Analogously, we can construct the dual bundle det·(M) by 
using the linear representation.::1 • = (det).i·. Its sections are 
the fields of n-covectors on M and, therefore, there is a natu­
ral isomorphism between the bundles det·(M) and A n(M). 

Example 4.3: Let UtI) be the unitary group. By relying 
on det(M) one can construct a principal U( 1 I-bundle of geo­
metric objects U(M). This can be done by considering the 
epimorphism u:G l(n;R)~U(I) defined by 
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u/(IJI) ~ exp[ilnlii (j'(IJI))I], (6) 

or shortly u = exp(i In Iii I). The conjugate bundle U*(M) is 
obtained in a completely analogous way, by relying instead 
on the epimorphism u* = exp ( - i lnliil). To the bundle 
U(M), which enters some recent unified theory of gravitation 
and electromagnetism [Ferraris and Kijowski (1981)'9], we 
shall give the name of unitary bundle of M. 

Example 4.4: Let us now consider the bundle L 2 (M). We 
define a natural left action of G 2(n;H) on the vector space 
T~ (Rn) = Hn ® (Hn)* ® (Hn)* by the following explicit rela­
tion: 

( i i )(ra) (i ra -b-c + i-a) rrj,rrjk be = rra bcrrjrrk rrarrjk, (7) 

where (rr5,rr}k) and r ~ are canonical coordinates in G 2(n;H) 
and T~ (Hn), respectively, and (?;,?"5k)' denotes the inverse of 
(rr5 ,rr5k)' The fiber bundle C(M) associated with L 2 (M) via the 
affine representation (7) above is an affine bundle of geomet­
ric objects, whose sections are easily recognized to be the 
linear connections over M. For this reason the bundle elM) 
will be called the connection bundle of M. It is easy to check 
that the vector bundle canonically associated with C(M) is 
the tensor bundle T~ (M). 

Example 4.5: We can now define a further bundle by 
"taking the trace" of C(M), namely by considering the fol­
lowing left action of G 2(n;H) on (Hn)*: 

(rr5,rr}d(Aa) = (Aa?"5 + rr:?";k), (8) 

where Aa are coordinates in (H)*. The mapping (8) is ob­
tained by taking a suitable trace in (7). It is easily seen that (8) 
is truly an action of G 2(n;H) X (H")* into (Hn)* and that it 
defines an affine bundle O*(M) over M, which will be called 
the dilatation bundle of M. This terminology is suggested by 
the fact that the sections of O*(M) are linear connections on 
the vector bundle det*(M)=A" (M), whose structure group is 
the group of dilatations in Hn. We can easily realize that the 
vector bundle associated with O*(M) is the cotangent bundle 
T*M. There exists, of course, a dual construction, which 
gives a bundle O(M) whose sections are connections on 
det(M). 

2. Other constructions involving the bundles of affine 
frames, projective frames, and spinor frames are currently 
under investigation and they will be the subject of further 
publication. 

5. LIFT OF DIFFEOMORPHISMS AND LIE DERIVATIVES 

In this last section we shall prove our main concern, i.e., 
we shall show that the construction presented above enables 
one to define in an intrinsic and canonical way the functorial 
lift of (local) diffeomorphisms of M to any bundle of geomet­
ric objects of type p and finite rank. This canonical lifting 
will provide more explicit formulas for the Lie derivative of a 
field of geometric objects. 

Note added in proof A more extended version, contain­
ing a detailed discussion ofU(M) bundles and their role in 
providing a possible characterization of the electric charge, 
will appear in J. Math. Pures Appl. Phys. 

1. Let k> 1 be an integer. Let 0: M_M be a local diffeo­
morphism ofM. There exists a canonical lift Lk(O ):Lk(M) 
_Lk(M) such that the following diagram is commutative: 
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IL k (M) ___ IL_k (L-fJ.J....) ___ • ILk (M) 

fJ M---------- M 
and Lk(O) is a local diffeomorphism which commutes with 
the natural right action of Gk(n;H) on L kIM). In fact, the local 
diffeomorphism L k( 0 ) is defined by the following relation: 

Lk(O):/(h )-/(O.h), (9) 

where h:U(O)CR n_M is a local diffeomorphism. 
It is easy to prove that the lifting L k:O_L k (0) so defined 

satisfies the following properties: 

Lk(idM ) = idLk(M), 

Lk(0,.02) = Lk (O".Lk (02), 

(10) 

(11) 

Therefore, L k defines a (covariant) functor from the category 
of manifolds with local diffeomorphisms to the category of 
principle fiber bundles with principal fiber bundle 
morphisms. 

2. The functorial construction above can be extended to 
any bundle of geometric objects of type p and finite rank k 
(B, M,1T;F,G, p) by the following procedure. First we remind 
the reader that, according to Sec. 3.5, the bundle B is asso­
ciated with the principal bundle Lk(M) via the canonical pro­
jection 1Tip): L kIM) X F -B defined by the group action p [in 
the sense of Example 2.5]. Let us denote by T the projection 
of IL kIM) X F onto the first factor L kIM). Then there exists a 
local diffeomorphism p(O ):8-B such that the following 
(three-dimensional) diagram is commutative: 

ILk(M)XIF 
ILk(fJ)Xid •. 

.lLk(M)XIF 

7~'(MI ILk(fJ) f\MI 
TTl p(O) 

B ; 
III 

~MI o~ 

fJ 
oM 

In fact, p(O) is defined by the following prescription: 

p(O ):1Tip) [lh,f]--+1Tlo) [l (O-h )/], (12) 

for any (/h,f)ELk(M)XF. The relation (12) is well defined, 
because L k commutes with the group action of Gk(n;R). 

It is easy to show that (12) defines a local isomorphism 
of bundles p(O ):8-B which, moreover, satisfies the required 
functorial properties: 

p(idM) = idB , (13) 

P(8,·02) = p(Od'P(82)' (14) 

Therefore, setting B = p(M) we have a covariant functor p 
from the category of manifolds with local diffeomorphisms 
to the category of bundles of geometric objects of finite rank 
with local bundle-isomorphisms. It is obvious that in the 
particular case F = G k(n;R) and p = idGk(n:R) the functor p 
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reduces to the functor L k. 

It is straightforward to prove that the covariant functor 
p defined above satisfies all the required properties in order 
to make (B, M, p) a bundle of geometric objects in the sense 
of Salvioli. 

3. In order to define the Lie derivative of a field of geo­
metric objects along a vector field X on M, we may now apply 
the standard procedure described in Salvioli (1972), making 
explicit the functor p. 

Then let 0, be the local I-parameter group of diffeomor­
phisms generated by a vector field X on M and let/3:M-B be 
a (local) section of a bundle of geometric objects 
(B,M,1T;F,G, p) of finite rank k> 1. The following relation, 

(15) 

defines a one-parameter family of local sections of B. Ac­
cordingly, we may define the Lie derivative of the (local) field 
of geometric objects /3 as follows: 

Lx/3:XEM - ~[/3,(x)] I . (16) 
dt I ,~O 

It is easy to check that L x/3 defines a (local) field of vertical 
vectors over /3, i.e., the following conditions hold; 

(i) 1TB ·(Lx/3) =/3, 

where 17' B :TB-B is the canonical projection; 

(ii) [T1T.(L x/3 ) ](x) = x, V xEM, 

where T1T:TB-TM is the tangent map of the bundle projec­
tion 17'. 

For further properties of Lie derivatives of geometric 
objects we refer the reader to Salvioli (1972) or Yano 
(1955).20 

Note added in proof A more extended version, contain­
ing a detailed discussion ofU(M) bundles and their role in 
providing a possible characterization of the electric charge, 
will appear in Annales Inst. H. Poincare. 
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We consider classical solutions for the strong gravity theory of Salam and Strathdee in a class of 
metrics with positive, zero, and negative curvature. It turns out that such solutions exist and their 
relevance for quark confinement is explored. Only metrics with positive curvature (spherical 
symmetry) give a confining potential in a simple picture of the scalar hadron. This supports the 
idea of describing the hadron as a closed microuniverse of the strong metric. 

PACS numbers: 04.20.Jb 

INTRODUCTION 

We shall discuss strong gravity theoryl when both (g 
andf) metrics admit the same three-parameter continuous 
group of motion described by infinitesimal generators 5 ~ 
(a = 0,1,2,3,; a = 1,2,3,) and thematrixM = 115~11 is of rank 
two so that the minimum invariant varieties are two-dimen­
sional surfaces of constant curvature. The three cases corre­
sponding to positive, zero, and negative curvature will be 
considered. The first possibility corresponds to a spherically 
symmetric metric and its general solution (for bothf and g 
metrics) has been found. 2 The possibility of having quark 
confinement in the backgroundfmetric was analyzed3 for a 
particular case (taking g!-'v = o!-,v)' The analysis is applied to 
our case in Sec. III. Exact solutions for the three cases are 
found in Sec. II. In Sec. I the mentioned symmetries are 
briefly described and their associated line elements in their 
most general form are deduced from the Killing equations. 

I. THE SYMMETRIES AND ASSOCIATED METRICS 

It is well known4 that the most general form of the 
spherically symmetric line element is given by 

ds2 = C (r,t )dt 2 - 2D (r,t )dt dr - A (r,t )d,z 

- B (r,t )(de 2 + sin2e d¢ 2), (1.1) 

with usual interpretation of t, r, e, and ¢ as radial coordi­
nates. 

Consider the case of the two-dimensional minimum in­
variant varieties of zero curvature. A space-time is said to be 
plane symmetric ifit admits the three-parameter group gen­
erated by the transformationl' 

y=y+c, 

z=z+b, 

y = y cos e - z sin e , 
z = y sin e + z cos e . 
The infinitesimal generators of the group are 

(1.2) 

al Partly supported by the National Science Foundation (United States of 
America) and Samoupravna Interesna Zajednica Za Nauku (Yugoslavia). 

o 0 
o 

115~11 = 
o 
o 

o 
o 
-z 

o Y 

It follows directly from the Killing equation 

(1.3) 

(1.4) 

that the most general line element admitting this group is 
given by 

ds2 = C (w,x)dw2 - 2D (w,x)dw dx 

- A (w,x)dx2 - B (W,x)(dy2 + dz2) . (1.5) 

In the same way, if the infinitesimal generators ofthe group 
are given by 

o 
o 

-z 

(1.6) 

that is to say, when the minimum invariant varieties ofthe 
three-parameter group are two-dimensional surfaces of neg­
ative curvature, the line element is 

ds2 = C (W,x)dW2 - 2D (w,x)dwdx 

- A (w,x)dx2 - B (W,X)(dy2 + e2Ydz2) . (I. 7) 

The expressions (Ll), (1.5), and (1.7) can be summarized in 
the line element 

ds2 = C (w,x)dw2 - 2D (w,x)dwdx - A (w,x)dx2 

- B (w,xl! dy2 + F( y)dX2) , (1.8) 

with F (y) = sin2y, 1, and e2y
, respectively. 

II. FIELD EQUATIONS 

with 

The field equations for the f and g metrics are2 

R!v -1ifJ!-,vR g = kg T!v , 

R ~v - V!-'vR f = kfT~v , 

R g = gl-'vR!v , 

Rf -fa{JRf 
JlV - ap/3v , Rf=f!-'vR~v , 

(11.1) 
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and the tensor Tp.v given by 

T!v 

= 8~:f ~u(f - gtP [(f - g)PT! ugp.v(gapgPT - gaPgpT) 

+ 2gap.(gppgVT -gpvgpTll + 2(gp.agvp -gp.vgaP)] , 
(11.2) 

T~v 
= M2 (~)u(f _ gtP [(f - g)PTvlp.v( gapgPT - gapgpT) 

81Tkf f. 
- 2( gp.agvp - gp.vgaP)] ' u + v = ! ' 

and they follow from the f-g Lagrangian 

.? 

= _ ~ _g)l/ZRg _..l (_ 1)1IZRf _ MZ( -glUt -II" 
kg kf 4kf 

x(f - g)aP(f - gtT(gaugPT -gapguT)' (11.3) 

We shall search for exact solutions of these equations in 
the case that the metric coefficients depend only on one vari­
able (kind of soli tonic solution). Choosing this coordinate to 
be x, the I and g metrics are given by 

ds; = gp.vdxP.dxv 
= y(x)dwZ - M(x)dwdx - a(x)dxZ 

- P(xJ!dyz + F(y)dzZ! ' 

ds; = Ip.vdxf'dxv 
= C (xjdwz - 2D (x)dwdx 

- A (x)dxZ - B (x)!dyZ + F(yjdzZ) . 

(11.4) 

We can simplify the above expressions by appropriate coor­
dinate transformations, though we should keep in mind that 
such transformations must be performed simultaneously on 
both metrics in order to preserve the invariance of the the­
ory. 

If one defines iJj = w + 1/1 with d1/l/ dx = - My we can 
write the I and g metrics as 

ds; = ydwZ - adxz - x2(dyZ + FdzZ) , 

ds; = Cdw2 - 2Ddwdx - Adx2 - B (dyZ + Fdz2) . 
(11.5) 

The nonzero components of the curvature are 

R ~ = ~ {C" + R ~C' _ C ~ '}; .1 ==AC _ D 2 , 

Rf = -- C"+----- , D { B'C' C'.1'} 
01 2.1 B U 

(11.6) 

with . .. {I for F= sin
2 

y 

E(F)-(£.)Z _ £. = 0 for F = 1 
2F 2F 1 £" F- Zy - lor - e , 

(11.6') 
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prime and dot meaning x and y differentiation, respectively. 
Also we have 
Rf 

=- C +----- +- B -----I (" B'C' C'.1') C ( " B'z B'.1') 
.1 B U .1B 2B U 

2 {C ( B'C' B'.1') } +Jj U B"+-c-~ -E(F) . (11.7) 

The components of the g metric are obtained by the simple 
replacements A-a, B-P, C-y, D-G in (11.6). 

Evaluation of the components of the tensors T!v and 
T~v gives 

T&=~(~)Uy{u(}_L[a+A(2P -3)]}, 
41Tkf 9ay .1 B 

T~l = M
Z 
(~)U ayD (3 _ 2f3), 

41Tkf 9ay.1 B 

Tfl = _~(~)Va{u(}_~[y+c(2f3 -3)]}, 
41Tkf 9ay .1 B 

TK = _~ (~)Ua{U()_ P (AY+Ca + P _ 3)}, 
zz 41Tkf 9ay fJ B .1 B 

(11.8) 

T~ = M
Z 

(9ay )U{vcO + y(ca + 2P _ 3)} , 
41Tk f 4.1 .1 B 

Tf = _~(9ay)U{VDO aYD} 
01 41Tkf 4.1 +.1' 

T{I = _ M
Z 

(9ay )U{VAO + a(AY + 2f3 _ 3)} , 
41Tkf 4.1 .1.1 

T{z = _ M2 (9ay )U{VBO+p(AY+Ca + P -3)}, 
41Tkf 4.1 .1 B 

where 

o -1- ex; + Ay : Ca (3 - ~) + ~ (6 - ~) -61· 
(11.8') 

It can be immediately seen from the relation 
R ~I - ~Ol R g = kg T~I that D = 0 or B = jxz. Following 
the previous workz we shall take the second possibility, 
B = jx2

• 

Further simplification is achieved by noticing that the 
relations aT& + yTfl = 0 and AT~ + CT{I + 0 hold. 
These facts, together with Eqs. (11.1) and (11.6) and theanalo­
gous expression for the components of the g metric Ricci 
tensor, imply a·y = const and.1 = const (0 is also constant). 
We make the choice a·y = I for simplicity. After some ma­
nipulation one gets the equations 

_~ +-I-<C+xC') = _ M2(~)U{ (I-v) + 3V}, 
az .1xz 41T 4.1 .1 4 

_1 (C II +~) = _ M2(~)U 
3.1 X 41T 4.1 

{ 
2 () Ay + Cy- 1 3 } 

X -v + --
3 .1 2 ' 

(11.9) 
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The solution of the first equation is 

3..1 { 2f.1'f U 2} C(X)=- E----X , 
2 x 9 

(II. 10) 

where A is a constant given by 

A = M2 (~)" {(I - v) + 3V} 
41T 4..1 ..1 4' 

(11.11) 

and,ul is an integration constant. Analogously, y(x) is found 
to be 

y(x) = 2:g -~ x 3
, (II.I2) 

with the constant A given by 

(II.I3) 

and,ug is another intergration constant. From the second 
equations in (II.9) and (11.10) we get 

Ay + Cy-I = ~..1 + L (II. 14) 

and, together with (11.12), we obtain 

1 
A (x) = ------

E - 2,uglx - Ax2/3 

{ 
2 3..1 [ . E - 2,u/x - Ux

2
/9 ]} 

X -+- 1- . (II.15) 
3 2 E - 2,uglx - Ax2/3 

So the relations (II. 10), (11.12), and (11.15) represent a com­
plete set of exact solutions of the field equations (11.1). 

III. DISCUSSION 

It has been proposed3 that hadrons can be interpreted as 
closed microuniverses generated by the strong/ gravity met­
ric. The geodesics associated with the/metric may provide a 
clue to understanding confinement in hadron physics. For 
that purpose we shall be concentrating on the possibility of 
having confining potentials in the case of our solution (11.10). 

To simplify calculations, let us put the/metric in diag­
onal form by performing a coordinate transformation given 
by 

aT = (~ yl2( dw _ ~ dX). (III. 1) 

The/metric turns out to be 

/flV = diag(jC, - ..1 IC, - ~X2, - jx2F) . (111.2) 

In order to consider a possible confinement let us solve a 
Klein-Gordon equation in the background/metric. Since 
our analysis will be only qualitative, we are considering a 
scalar hadron although the realistic Dirac equation can be 
exactly solved5 in the/metric (in the case of a spherically 
symmetric metric). 

The Klein-Gordon equation 

I a (( _ /)1/2jfl va <J» + m2<J> = 0 (III.3) 
( _ /)1/2 fl v , 

turns out to be 

~a;<J> -~ax(Cx2ax<J» -~ay(FI/2ayl/» 
C 3..1 x x F 

__ 1_ if.<J> + ~ m21/> = 0 . 
x 2F Z 3 (I1I.4) 
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U(q) 

c<o 

U 
c>o 

---+----=----+ q n 
FIG. I. Qualitative behavior of U(q) when E;tO and sgn E = - sgn A. 

We can separate variables by writing 

. R(x) 
I/> (x) = e- ""T_1](y);(Z), 

x 

and the resulting equations are 

t(z) = e±ivz, 

~ (Fllzi]). + ~ = (F)1/21(1 + 1), 

R " C' R' 3..1 +- +-
C 2 

(111.5) 

X [~- 2m
2 

- ~ £ + I (I + 1) ] R = O. (1II.6) 
C 2 3C 3..1 Cx Cx2 

By a suitable change of variable q = q(x) the last equation in 
(III.6) can be put in the Schrodinger form 

R "(q) + [w2 
- U(q)]R (q) = 0, (111.7) 

with the potential given by 

U(q) = 2CtJ2 C(q) + (~)112 C(q) _ 1(1 + 1) C(q). 
3 3..1 x(q) X2(q) 

(III.T) 

This Schrodinger-type equation for the radial part can 
be studied qualitatively (at least) to look for the existence of 
bound states leading to (total or partial) quark confinement. 

In the solution (II. 10) we take,ul = 0 and A = U 19. 
Since we have different choices for the constants E and A the 
following possibilities arise: 

(aj E#O and E and A have different signs. 
The potential is given by 

U(q) = ±~IAI {1(~+I) _ 2+2m
2
/3 IAI}, 

2 sm2 q cos2 q 

qE(0,1T12) . (111.8) 

See Fig. 1. 

~ 
-+-----=~~q 

~ 

FIG. 2. Qualitative behavior of U(q) when E;tO and sgn E = sgn A. 
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U(q) \ 

~ 
-f-------... q 

FIG. 3. Qualitative behavior of U{q) when ~ = o. 

(b) £¥O, and £ and A have the same sign. 
The potential is 

U( ) - ~{/(/+l) 2-2m
2

/ IAI} (0) q - + + , qE ,00 • 
- 2 sinh2 q cosh2 q 

(111.9) 

See Fig. 2. 

(C)E=O. 
2m2 1 

U (q) = const ± 3iAI q2' qE(O, 00 ) • (III.W) 

See Fig. 3. 
As is obvious from this qualitative analysis, the only poten­
tial that increases infinitely and thus can give rise to discrete 
eigenvalues of the radial solution is (111.8) with positive sign 
(i.e., E = I and A < 0). It turns out that this is exactly the 
potential obtained in Ref. 3, where the explicit solutions for 
the eigenvalues can be found. 

So although the exact classical solutions exist in the 
wider class of metrics (1.8), only the metric with positive 
curvature can give a confining potential in this simple pic­
ture and the idea of regarding hadrons as closed microuni­
verses of strong gravity is strongly supported. The metrics 
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with negative and zero curvature (open and fiat universes) 
can produce no confining potential. Besides, it follows that 
the choice of parameters relevant to the confining potential 
(111.8) automatically gives C>O and there can be no radi­
ation in the sense of Hawking. 6 In Ref. 3 radiation is avoided 
by a special choice of parameters that turns out to be the only 
possibility. 

This analysis lacks the presence of color that is natural­
ly incorporated in the theory of strong interaction (QCD). 
However, the study oftheJ-g theory with color, either in the 
simple SU(2) form 7 or in the more general form incorporat­
ing Weyl symmetry,S showed the change of/metric to be of 
order IIr. This term is irrelevant for long-distance behavior 
where confinement occurs, and spin I gauge bosons are rel­
evant to distinguish qq from qq states. 
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The paper contains, along with a brief review of solutions of general relativistic field equations 
when the metric is of a particular cylindrically symmetric stationary form, a new solution of the 
same general category when the energy-momentum tensor is due to a perfect fluid plus a scalar 
field. It turns out that under these constraints, the space-time is completely homogeneous and 
contains closed timelike lines. There is, however, a non uniqueness in the interpretation as one can 
introduce a Maxwellian electromagnetic field of arbitrary strength along with the perfect fluid 
and the scalar field. 

PACS numbers: 04.20.Jb, 04.20.Cv 

I. INTRODUCTION 

In a recent paper Raychaudhuri and Guha Thakurta I 
have shown that the stationary, cylindrically-symmetric line 
element 

ds2 = dt 2 - dr - dz'2 - 2m(r)difJdt - I (r)d~ (1.1) 

will represent a homogeneous space-time (i.e., admits four 
linearly independent Killing vectors) only when m(r) and I (r) 
satisfy the following conditions: 

or 

or 

D=(I + m2)112 =Alear +A2e- ar
, 

J.. dm = C 
D dr ' 

D=Ar, 

J.. dm =c' 
D dr ' 

D = const, 

(1.2) 

(1.3) 

A I' A2, A, C, and C' being arbitrary constants. Specific 
choices of these constants yield the solutions of G6del, 2 Ozs­
vath/ Som and Raychaudhuri,4 Reboucas,5 Novello,6 and 
Gegenberg and Das. 7 The G6del solution, 

ds2 = dt 2 - dr - dz2 + 2V1 sinh2r difJ dt 
+ (sinh4r - sinh2r)d~, (1.4) 

represents the only homogeneous space-time with a perfect 
fluid content8 (all other perfect fluid solutions, e.g., the 
Hoenselaers and Vishveshwara solution,9.10 are reducible to 
the G6del solution), the fluid obeying the equation of state: 
density = pressure (uniform). In the original version of his 
solution G6del solved Einstein's field equations retaining the 
cosmological A term, and thereby arrived at a uniform dust 
distribution (vanishing pressure). 

In the paper by Raychaudhuri and Guha Thakurta it 
has been shown that if the condition C = V1 a (which, inci­
dentally, must be satisfied by all perfect fluid solutions) is 
relaxed, homogeneous space-times of the form (1.1) allows 
the introduction of an electromagnetic field along with uni­
form perfect fluid distribution, but the equation of state of 
the fluid is now changed to an inequality: density> pressure. 

The electromagnetic field may have a uniform distribution 
of sources or may satisfy source-free Maxwell's equations. 

Ozsvath, retaining the cosmological A term in Ein­
stein's field equations, and considering a material velocity 
vector (a Killing vector) different from the velocity vector in 
a co-moving system, has interpreted the homogeneous 
space-time of the form (1.1) as due to a uniform dust distribu­
tion along with an electromagnetic field satisfying source­
free Maxwell's equations. 

The Som and Raychaudhuri metric 

ds2 = dt 2 - dr - dz2 - (12 - a2r4)d~ + 2ardifJdt (1.5) 

is a homogeneous space-time of the form (1.1) with m and I 
satisfying (1.3). Here the universe contains a uniform distri­
bution of charged dust with charge density = twice dust 
density (in general relativistic unit) and an associated electro­
magnetic field. 

The Reboucas metric 

ds2 = dt 2 - dr - dz2 

4fl + - cosh ar difJ dt 
a 

[ n 2 + a 2 
] + 2 2 cosh2ar + 1 difJ2, n -a 

with a2 = 2(n 2 _ a 2), 

(1.6) 

represents for a -=I 0, a non vanishing electromagnetic field 
along with a perfect fluid distribution. With a = 0 the elec­
tromagnetic field vanishes and the solution is transformable 
to the G6del solution. 

Novello considered solutions of Einstein's field equa­
tions with a cosmological A term and an energy-momentum 
tensor corresponding to a vortex dominated non-Stokesian 
fluid which is characterized by a linear relationship between 
the anisotropic pressure (llj) and the vortex tensor n ; [=u/ 
{j)j - ({j)2 /3 )8;, (j); being the vorticity vector of the fluid]. He 
arrived at the homogeneous space-time of the form (1.1) with 

2 
m(r) = /2 cos ar, 

(r-2)1 

I(r) = - ( ~ ~ ~ ) cos
2
ar + 1, 

where a is a constant and the constant r relates ll; and n;: 
ll; = - yn;. A perfect fluid coupled with an electromag-
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netic field was shown by him to be a realization of such a 
vortex-dominated non-Stokesian fluid. 

More recently Gegenberg and Das have found a class of 
exact solutions to the combined Einstein-Maxwell-Klein­
Gordon field equations, thereby demonstrating the possibil­
ity of still another interpretation of sources of homogeneous 
space-time of the form (1.1). Their solutions, 

ds2 = - (dr + dr + rdtf) 
+ [a(r)d¢ +dt ]2, 

with a(r) = ± (81T) I /2mr, represents a universe consisting of 
a complex, charged, massive, Klein-Gordon field ¢ = exp[i­
(L¢ + Et )], with mass m, along with an associated constant 
magnetic field B = ± 21 /2mz + Bo along the symmetry axis 
(Bo, L, E are arbitrary parameters). The authors assumed 
validity of a sort ofWeyl-Majumdar-Papapetrau condition. 
The magnetic field vanishes and the metric becomes static if 
the K.G. field is taken to be massless. 

In view of all these facts it seemed worthwhile to inves­
tigate the possibility of existence of space-times of the form 
(1.1) with a combination of a perfect fluid and a real, un­
charged K.G. field as its source. As shown in this paper such 
a possibility exists only if the K.G. field is massless (unlike 
the case of charged fields considered by Gegenberg and Das). 
It further turns out that the resulting space-time is homogen­
eous with the possibility of incorporating an electromagnetic 
field with or without a homogeneous distribution of sources 
in addition to the perfect fluid and K.G. field. 

II. THE FIELD EQUATIONS FOR THE FLUID CUM 
SCALAR FIELD 

With the usual Lagrangian for the massive scalar field 
as 

L = - H¢.I'¢·I' - M2¢ 2], 

the Einstein equations are 

Gaf3 -Raf3 - 'iSaf3R 

= 81T[(p + p)Va Vf3 - pgaf3 
+ 1(¢.1'¢·1' - M2¢ 2)gaf3 

- !¢.A.f3 ]· (11.1) 

If vi' is an eigenvector of G I' v (we shall show in the last section 
that if vi' is not an eigenvector of G I'Y then no solution of the 
desired type exists), then we have either 

vI'¢'1' = 0 

or (11.2) 

¢.I' = avl" 

With A. = av ,V is hypersurface orthogonal and hence by '1'.1' I' I' 
a coordinate transformation the line element (1.1) can be re-
duced to static form (with m = 0). Now for the line element 
(1.1),A 1'=8b is an eigenvector ofGI'Y' Ifwe demand that the 
fluid velocity vector coincides with A 1', i.e., the coordinate 
system is co-moving, we get 

¢.o =0 

Written out explicitly for the metric (1.1), with Xl = r, 
x 2 = z, x 3 = ¢. The equations (11.1) now give 
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(11.3) 

(11.4) 

D\l- mi =81T[P-P +J.... M 2¢2_¢I¢·I]D, 
2D 2 2 . 

(11.5) 

+( ";1)1 =81T[P~3P +M2¢2]D, (11.6) 

+( mil ;lml)1 =81T[ -m(p+p)-¢.3¢·O]D, (11.7) 

+( ;1 )1 =0, (11.8) 

+ (II + Dmml )1 = 81T[ P ~p + +M2¢ 2 - ¢.3¢·3 ]D, 

(11.9) 
and the equation for the scalar field is 

O¢ = _M2¢. (11.10) 

Again the vanishing of G12, Gl3 , and G23 implies that only 
one of ¢.I' ¢.2' and ¢.3 is nonzero. 

In case ¢.3 =I- 0, ¢.I = ¢.2 = 0, Eq. (11.10) gives D = con­
stant, which in tum implies ¢ = constant from (11.4), (11.5), 
and (11.9) and hence the scalar field vanishes. 

If again ¢.I =1-0, ¢.2 = ¢.3 = 0 Eqs. (11.4) and (11.5) give 
2 

m l 2 
D\l - - = 81T¢ ID. 

2D . 
(11.11) 

But from (11.4), (11.6), and (11.9) 

D = 81T[ P + 3p + J.... M 2A. 2]D 
11 2 2 'I' , 

(11.12) 

and from (11.6) and (11.8) 

mi = 81T[ P + 3p + J.... M2¢ 2]D. 
2D 2 2 

(11.13) 

From (11.11)-(11.13), ¢.I vanishes. 
Lastly let us consider ¢.2 =1-0 and ¢.I = ¢.3 = O. Since 

the metric (1.1) obviously admits the Killing vector 51'=f) ~ 
the vanishing of the Lie derivative of T I'V with respect to 51' 
yields 

¢.2.2 = 0 or ¢ = az, (11.14) 

where a is an arbitrary constant and a trivial constant of 
integration is omitted. Equation (11.10) now gives M = O. In 
this case, (11.4), (11.6), and (11.7) imply p andp are constants 
and 

~ = 4J7T(2p + a 2
) = c, 

D 
where c is a constant. From (11.6) and (11.9) 

D11 = 161Tp = a 2 

D ' 

(11.15) 

(11.16) 

where a is a constant. The general solution of (11.16) is 

(11.17) 

A I and A2 being arbitrary constants. In the case p = 0, we 
have 

D=a'r (11.18) 

or 

D=a", (11.19) 
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where a' and a" are arbitrary constants. Using (11.15) and 
(11.17) 

(11.20) 

where B is an arbitrary constant. The pressure p and the 
density p are given by 

a2 a2 
2 e2 3a2 

p = 161T' P = 161T + 2a = g; - 161T' (11.21) 

the constants a, e, and a being related by 

(11.22) 

The solutions for m corresponding to (11.18) and (11.19) are, 
respectively, 

ea'..2 B' m=-r + , 
2 

(11.23) 

and 

m =ea"r+B", (11.24) 

where B ' and B " are constants. With density p given by 

p = 2a2 = e2/81T. (11.25) 

III. ALTERNATIVE INTERPRETATION FOR THE METRIC 

It would be noted that Eqs. (11.15) and (11.17) are identi­
cal with the condition deduced by Raychaudhuri and Guha 
Thakurta for homogenity so that the solutions we are seek­
ing are all homogeneous. Further (11.21) requires e2 > 202

, 

which is again the condition that these authors found for 
satisfying the Einstein equations with a distribution of per­
fect fluid and electromagnetic field (the electromagnetic field 
satisfying the Maxwell equations with or without source). It 
thus appears that these metrics admit an alternative inter­
pretation-and one is tempted to ask whether one can com­
bine all three to give a different interpretation. It is shown 
below that this is indeed possible. The field equations will 
now be 

a2 - £. = 81T[ P - P - 7 1 ] 2 2 I , 
(111.1) 

0= 81T[ P - P + ~ + a 2] 2 2 , (111.2) 

e
2 

_ 8 [p + 3p ° ] -- 1T ---+70 
2 2 ' 

(111.3) 

a2 - £. = 81T[ P - P + 7 3 
] 2 2 3 , 

(111.4) 

0=r6, (1II.5) 
where rp represents the electromagnetic stress-energy ten­
sor. Equations (III. 1 )-(111.5) along with the Rainich condi­
tions yield 

a2 1 
p = 161T' P = 161T (e

2 
- a

2
) + a 2

, (111.6) 

7: = - ~ = ~ = - rg 
= -- a - - + 81Ta 1 [2 e

2 
2] 

161T 2 ' 
(111.7) 

° m [2 e
2 

2] 73 =- a --+ 81Ta . 
81T 2 

(111.8) 
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The reality condition for the electromagnetic field (rg > 0) 
constrains p and p as 

p>p + 2a2
• (111.9) 

A non-unique interpretation of the sources of the electro­
magnetic field is possible. One choice is 

FI3 = _ F31 = ± _1_ (e2 _ 202 _ 161Ta2)1/2, 
2D 

FOl = _FlO = mF 31 , (111.10) 

a(==charge density) = ~ (e2 
- 202 

- 161Ta2 )1/2, 
81T 

which corresponds to a homogeneous distribution of 
sources. Another choice is 

1 F 13 = _F31 = ± 2D (e2-2a2-161Ta2)1/2cosO, 

F20 = _ F02 = ±! (e2 _ 202 _ 161Ta2)1/2sin 0, 
(111.11) 

FlO = _ FOI = ± ; (e2 - 202 - 161Ta2)1/2cos 0, 

which satisfy source-free Maxwell equations for ° = - ez. 

IV. EXISTENCE OF CLOSED TIMELIKE LINES 

The coordinate 1/1 in (1.1) can be treated as an angular 
coordinate if g33-+O and g33/g 11--12 as r-+o. One can then 
use the transformations X = r cos 1/1, Y = r sin 1/1 and obtain 
analyticity of the metric at r = O. II The choice of constants 
for which 1/1 can be treated as an angular coordinate is seen to 
be 

(IV.l) 

With this choice of constants, the t, z, r constant lines are 
closed timelike lines for 

2 h 12e 0 r> - cot - - (A I > ) 
a a 

or (IV.2) 

2 h-12e ° r<-cot - (AI < ). 
a a 

V. ABSENCE OF STATIONARY SOLUTIONS WHEN THE 
FLOW VECTOR IS NOT AN EIGENVECTOR OF GJ.<v 

Since A J.<==~ is an eigenvector of GJ.<v (with eigenvalue 
A, say), contraction of G J.<V with A J.< yields 

(p + p)VOv l - ¢.O¢.I = 0, 

(p + p)VOv2 - ¢,0¢.2 = 0, 

81T[(P+p)v~ -p-!¢,a¢·a_¢~o] =,.1" 

81T[(P + p)VOv3 + mp - m ¢ a¢·a 2 . 

- ¢.0¢,3 ] = - mAo 

Equations (V. 1 )-(V.4) give 

.!:.L = ..!2... = mvo + V3 
¢,I ¢.2 m¢,o + ¢.3 

¢.o olD 
--'---=~, say 
(p + p)vo 
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131 



                                                                                                                                    

where emay not be constant. Fore #0, (V.5) can berewrit­
ten as 

VI = e¢i,I' Va = ¢i,ole(p + pI, 
(V.6) 

V3 = e¢i.3 + m¢i.o [e _ 1 ]. 
(p+p)e 

For e 2 = l/(p + pI, Vi< = e¢i.i< and then the R g and R 6 
equations imply m = constant, and so by a transformation 
of the tf coordinate (1.1) can be reduced to static form. The 
other case of interest with e # ° is 

VI = V2 = ° = ¢i.1 = ¢i.2' 
(V.7) 

Vo = __ ¢i.:...:.:..o __ 
e(p+p) 

V3 = e¢i.3 + m¢i.o [e _ 1 ], 
e(p+p) 

and the corresponding field equations are 

p=p, 

m 2 

DII--I =0, 
2D 

( II ~;m I ) I = 8rrD (P'V3V3 - ¢i,3 ¢i ,3), 

( ~~ I )1 = 8rrD (p'voVO - ¢i,o¢i .0), 

( ~ ) I = 8rrD (p'vov3 - ¢i,o¢i ,3), 

(m/ 12-;lm l )1 =8rrD(p'v3v
O -¢i,3¢i'O), 

(V.8) 

(V.9) 

(V.lO) 

(V.U) 

(V.12) 

(V.13) 

and O¢i = ° = m 2¢i.o.o + 2m¢i,o,3 - D 2¢i.o,o + ¢i,3,3' (V.14) 

wherep' = p + p = 2p. 

The normality condition for the flow vector yields the fur­
ther equation 

¢i 1 _ e 2 (m¢i ° + ¢i 3)2 = 1. 
ep,2 D2 ' , 

From (V.6) and (V. 12) 

( ~I ) I = ° or ~I = k, 

where k is a constant. From (V.9) and (V.16) 

D =Alek'r + A
2
e - k'r, 

so that 
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(V. 15) 

(V.16) 

(V.17) 

m = 2(A le k 'r _ A 2e - k 'r + const), 

where 2k,2 = k 2, 

(V.18) 

Again a rather involved manipulation using (V,9), (V.lO), 
(V. 11), and (V, 15) yields 

and 

k ,2/8rr + ¢i ~o = p', 

¢i 1 = e 2p'2, 

P'(¢i,3 + m¢i,o)2 = 0, 

(V.21) implies either 

p' =0 

or 

m¢i.Q + ¢i,3 = 0, 

(V,19) 

(V,20) 

(V.21) 

(V.22) 

(V.23) 

Condition (V.22) implies, in view of (V.19) and (V,20), 
m = const, and so that metric is transformable to the static 
form. Condition (V,23) implies, since¢i = ¢i (tf,t), m = const, 
with obvious conclusion. For the particular case e = 0, Eqs. 
(V.5), (V.14), and (V. 10) imply ¢i,o = ¢i,3 = 0, so that the sca­
lar field vanishes, 
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Existence of solutions of integral equations in the thermodynamics of one­
dimensional fermions with repulsive delta function potential 
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We prove by an iteration scheme that the solutions of coupled integral equations in the 
thermodynamics of the fermions in one dimension with delta function potential exist. 

PACS numbers: 05.30.Fk 

I. INTRODUCTION 

Since the early 1950s, people have searched for one di­
mensional models of many body systems that are mathemat­
ically attractable. In 1950, Tomonaga first proposed a model 
for the electron gas that can be solved exactly. I The model 
treats the elementary excitations as bosons and further as­
sumes that the momentum transfer equals the energy trans­
fer. Obviously the last condition is an approximation though 
it is argued that the condition would be satisfied near the 
fermi surface. A more realistic model with conventional qua­
dratic kinetic energy is the delta function model of the 
Hamiltonian 

a2 

H= - I-2 + 2c I8(x j -Xj)' c>O. (1) aXj i>j 

The ground state energy of (1) for the bosons was first ob­
tained by Lieb and Liniger2 in 1965, assuming that the wave 
function is a finite sum of plane waves with coefficients to be 
determined from some transcendental equations. That is, 
the wave function is assumed of the form 

if 

(3) 

where PI' P2""PN is a permutation of 1,2, ... ,N. The coeffi­
cients a p are to be determined by matching the wave func­
tion (2) with the wave functions in other regions than (3) and 
a set of transcendental equations thus result. This assump­
tion is known as Bethe's hypothesis. It was originated by 
Bethe3 in the early forties when he studied the Hamiltonian 
of the ferromagnets 

1 
H = - '2 I (axa~ + aya; + aza;), (4) 

where the as are the spin operators. Yet it is surprising that 
the hypothesis was successfully applied later to a number of 
quantum models in one dimension and classical models in 
two dimensions. These include the anisotropic ferromagnet­
ic model, the quantum lattice gas model, the ice model, the 
ferroelectric model, and the delta function model mentioned 
earlier. 

N ow the fermion case of the delta function model ( 1) 
imposed a greater difficulty than the boson case because of 
the fermi statistic symmetries required for its wave func­
tions. McGuire4 and Flick and Lieb5 first solved the one spin 

down and two spin down cases. Later Gaudin° and Yang7 

obtained the solution for the n spin down problem and more 
generally Yang classified all the solutions of any statistics 
using group theoretical approach. At about the same time, 
some other problems of the delta function model have also 
been solved. These include the S matrix for any finite num­
ber of particles,8 the ground state energy of the fermion­
boson mixture,9 and the thermOdynamics and excitation 
spectrum at finite temperature for the bosons. 10 

The thermodynamics in the fermion case again imposed 
further complication than the boson case. For now it is more 
difficult to determine all the excited states of the system. To 
achieve this, one has to locate all the solutions of the tran­
scendental equations in Bethe's hypothesis. This was finally 
solved by the present author in a previous paper I I showing 
that the roots of the transcendental equations were lying in 
strings in the complex plane. More specifically, the transcen­
dental equations in Bethe's hypothesis for the case of N spin 
down are given by 

ejpL = II ( - p + A : - ~e ), 
A' - P + A + IC (5) 

II ( - p' + A - iel2 ) ( - A ' + A - ie ) 
p' - p' + A + ie/2 = -!l - A ' + A + ie ' 

where the p's are the local momenta and the A 's (M in num­
ber) are some auxiliary variables. In the ground state, the p's 
and A 's are real numbers. In the excited states, the A 's are 
complex numbers in the form of strings: 

A=t+i,u7J+ O (e- kL
), ,u= -(m-l), 

- (m - 3), ... ,(m - 1), (6) 

where 7J = e/2, k> 0 is a certain number, and t is real. The 
integer m defines the length of the string that contains m 
complex numbers. Thus the two numbers t and m define a 
string uniquely. Let C (t,n) denote such a string. By the use of 
(6), (5) become equations for the p's and t 's and in the limit L, 
N, M-oo proportionally, they yield the following integral 
equations for the density functions of p's and C (t,m): 

1 1 foo '21T =P+Ph -2 -00 GI(p-k)Pdk 

1 foo + '2 _ 00 Go(p - k )al,h dk, 

(7) 
1 foo 

an +a".h =2 -00 Go(p-k)(an+ l.h +an_I,h)dk, n>l 
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where CTo,h = P and 

1 f"" eiwke - "'71"'1 
G"(k) = - d(J}. 

21r 00 cosh 1](J} 
(8) 

The CT m , CT m,h are defined by 

NCT m dt = the number of t 's for strings c(t,m) in [t.t + dt], 

NCT m,h dt = the number of "holes" for the above t 's in 
[t,t + dt], (9a) 

and the P and Ph are the density functions for the p's and its 
holes, respectively, 

P dk = the number of p's in the interval [k,k + dk], 

Ph dk = the number of holes for the above p's in 
[k,k + dk]. (9b) 

If one defines 

Ph/P = exp (E(p)lT), CTm,h/CTm = exp (ipm(k)l1) (10) 

and minimizes the free energy (E - TS)/ L [subject to fixed 
N / Land (N - 2M)/ L ] to obtain the equilibrium distribu­
tions of p's and CT": s, one arrives at the following equations 
for E(k ) and ipm (k ): 

A =p2_E_ - G1(p-k)ln(1 +e-ElT)dk T foo 
2 -00 

- - Go(p - k) In (I + e'P,IT)dk, (1Ia) T f"" 
2 - "" 

The free energy F and the pressure P are then given by 

!...=A N -~f"" In(l+e-E1T)dk 
L L 21r - "" 

-A (N ~2M), (12) 

(13) 

where A is the chemical potential. Here A can be seen as the 
magnetic field. [The Hamiltonian (I) for a fermion system 
will have an additionaltermA (N - 2M), withN - 2Mbeing 
the total spin of the system.] Thus the solutions of (1Ia)­
(lid) determine all the thermodynamic quantities. 

It can easily be shown that in the limit c-O (free fer­
mions) and C-oo (free fermions of only one species), (1Ia)­
(lid) give the correct temperature distribution functions. It 
also yields the correct second virial coefficients for any value 
of c. But unlike the boson system the general existence of 
solutions in (1Ia)-( lid) has not been established. In the bo­
son case, a single integral equation of similar nature was 
shown by Yang and Yang lO to have solutions by iteration. 
The present author has long suspected that an iteration pro­
cedure can also be applied to (1Ia)-(lld) though it may not 
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be obvious at first sight. In this paper, I prove that (1Ia)­
(lid) can indeed be solved by iterations when the chemical 
potential A is negative and the magnetic field A = O. This not 
only establishes the existence of solutions for the case men­
tioned but also guarantees the convergence of the iteration 
method in numerical computation. 

In the following, the existence theorems will be de­
scribed in detail. The method of proof is quite extraordinary 
as it involves repeated use of inductions and seems to be the 
first time that it is applied to the coupled integral equations 
of type (lla)-( lid). 

II. EXISTENCE THEOREMS 

We use an iteration scheme to prove the existence of 
solutions for equations (1Ia)-( lid). The iteration is defined 
in operator forms as follows (T is scaled to be I): 

E({))= -A +p2, 

ip~)=O, v>l, 

m ll)­
't'l -

2 GI "" - A + P - -In (I + e- < ) 
2 

G 
- _0 In [I + exp (ipIIO)) ] 

2 ' 

~ In (I + exp ip~o)) 
2 

G 
- _0 In [I + exp (- EIO))]. 

2 

ip~)= Go In(1 +expip~~I) 
2 

+ !Go In (I + exp ip~~ I)' v>2 (14) 

and so on for Em, ip~), etc. Here we use Go and G1 as the 
integral operators with kernals Go(p - k), G1(p - k) de­
fined in (I la)-(IId). We also assume that the chemical poten­
tial A is negative and the magnetic field A is zero in (1Ia)­
(lid) 

A <0, A = O. 

That is, we are looking for solutions with boundary condi­
tions 

lim ipjv = o. 
v-"'x 

Then for the iteration (14), the following theorems hold: 
Theorem 1: In the iteration (14), E ln ) forms a decreasing 

sequence 

EIO) > EO) > EIZ ) > ... > E In) > .. , , 

and ipv!n) forms an increasing sequence: 

ip ~)<'ip ~)<'ip ~~)<""<'ip ~)<. ... 

(the sign < in (16) holds strictly for n>v). 

(15) 

(16) 

Theorem 2: E In) is bounded below and ip ~) is bounded 
above. 

Theorem 3: 

lim ~n)( p) = E( p) 
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and 

(17) 
n-~oo 

exist and satisfy Eqs. (1Ia)-(lld). 
Theorem 3 is a straightforward consequence of Theo­

rems 1 and 2. Their proofs are given in Sees. III and IV. 

III. PROOF OF THEOREM 1 

The proof is based on several lemmas. 
Lemma 1: The kernels Go(p - k) and GI(p - k) are 

positive functions 

(18) 

and 

w' - w..;;x' - x..;;fP ' - fP. 

Then the following inequality: 

G I In[(1 + exp w')/(1 + exp wn 

< Go In [(1 + exp fP')/(1 + exp fP)] 

holds for the integral operators Go and G I defined in (8). 
Proof By Lemma 1 and Lemma 2, one has 

G 1 In [ 1 + exp w' ] ..;; G 1 In [ 1 + exp x' ] 
1 + exp w 1 + exp x 

= Go In [ 1 + expx' ] 
1 + expx 

(27) 

(28) 

";;Go In [ 1 + exp fP' ]. (29) 
1 + exp fP 

This completes the proof. Note that in (29), the detailed com­
parison of the kernels Go and G J is not required once the 
inequalities of type (26) and (27) are established. This lemma 

GJ= J: 00 GI(p - k )/dk =/ 

(19) will be used later when we deal with the iterationsE(n) in (14), 
where both Go and G I are present. 

if/is a constant function. 
Proof From (8), the kernel Go has the following closed 

form: 

Also, the Fourier transform of GJ is given by 

- e-'7iwi 
GI(w) = = Go(w)e-'7iwi. (21) 

cosh1]w 

Thus by convolution, 

Gdk) = Ioo Go(k - k ') 2 1] ,2 dk' > O. 
-00 17 +k 

(22) 

Now 

(23) 

J:oo G I(p-k)dk=G I(O)=1. 

Thus (19) is true if/is a constant function. The positiveness 
of Go and G 1 in (18) is very crucial and will be used in the 
proofs of all the remaining lemmas and theorems. 

Lemma 2: The inequality 

(1 + ?y(1 + ?);.(I + eY')I(I + eY
) (24) 

holds if 

X;.Y, 

(25) 
(X' - X);.(Y' - Y);.O. 

The proof is straightforward if one takes the logarithm 
of (24) and notes that the derivative ofln( 1 + e X) is an in­
creasing function. 

Lemma 3: Suppose x andx' are constants and w,w',fP,q/ 
are functions satisfying the inequalities 

(26) 
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Lemma 4: For fixed n > 0 the following holds: 

fP \nl..;;fP inl..;; .. ·..;;fP ~I..;; ... ; (30) 

furthermore the sign < holds strictly for v";;n. The proof by 
induction is straightforward. 

Lemma 5: For a fixed m, assume that 

EO) > E(2) > '" > E(ml, 

fP~I";;fP~I";;"''';;fP~ml, v;;d. 

Define 

/~nl = (1 + exp fP~I)I( 1 + exp fP~ - 11), v> 1, 

(31) 

(32) 

/~I = [1 + exp ( - eln - (1)]/[ 1 + exp ( - elnl )]. (33) 

Then 

(34) 

holds for n..;;m + 1. 
Proo/byinduction: Suppose (34) holds for n<J..;;m. Then 

take 

fP V: il - fP Vl+ 1 = (G0I2) In (fV,+ 2 /V - 11), 

fP V + 1) - fP V1 = (G0I2) In (fV,+ 1 /V ~ III). 
By the induction hypothesis, one has 

fP V: il - fP Vl+ 1 >fP V + 1) - fP V1 

(35) 

(36) 

and by Lemma 1 and Lemma 2, (34) holds for n = j + 1. It is 
easy to show that (34) holds for n = 1. This completes the 
induction. [(31) is required for the case v = 1.] 

Lemma 6: For a fixed m, assume that 

fP ~1..;;fP ~)";;"''';;fP t;'l, v> 1. 

Define the following integral equations: 

YI = (Go/2) In (1 + expYz), 

Y2 = (Go/2) In (1 + expY3)(I + eXPYI)' 

(:) 
Yv = (G0I2) In (1 + exp Yv+ I) 

X(I + expyv _ 1)' v;.2, 

(37) 

(38) 

and so forth. Let us also define the iterations for the above 
equations by 
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y\O) =y~) = ... =y~) = 0, v>I, 

y\11 = (G0I2) In (1 + expyl?l) = ~ In 2, 

y~1 = (G0I2) In (1 + expy~~ I) 

X(I + expy~~ I) = In 2, v>2, 

(39) 

(40) 

and so forth, for y~I,y~I,. ... Thus except for YI'Yv satisfies the 
same integral equations as rpv in (lIe) and the iterations y~nl 
are sequences of constant numbers. Then the following 
inequalities: 

rp~I<.v~I<rp ~~ I' (41) 

rp ~I - rp ~ - 11<.v~1 - y~ - II<rp ~"~ I - rp ~;/I (42) 

hold for n<m. 
Proo/by induction: Comparing (39) with (14), it is easy 

to establish that (41) and (42) hold for n = 0,1. Suppose they 
hold for n<m - 1. Then by Lemmas 1 and 2, 

rp~+ II _ rp~1 = Go In [ 1 + exp rp ~~ I ] 
2 1 + exp rp ~; / I 

+ _0 In T v-I G 
[

1 + exp mini ] 

2 1 + exp rp ~-=-/I 
«the same form as above with the rp's 

replaced by the y's) 

=y~+ II _ y~nl 

< Go In [ 1 + rp ~~ 2 ] 

2 1 + exp rp ~n;211 

+-oln Tv 
G [I + exp mini ] 

2 1 + exp rp ~n - II 

= rp ~.: /) - <p ~~ I' (43) 

Similarly, one can show that (41) holds for n<m. This com­
pletes the proof. 

Lemma 7: Suppose (31) and (32) are true so that up to 
n = m, - €nland rp ~I are increasing sequences. Define con­
stants x Inl such that 

XIOI=O 

X Inl = ! In (I + exp x In - I I) 

+! In (1 + expyln-II), n>l, 

where y Inl are the sequences of constants defined in (40). 
Then 

(44) 

_ €nl + €n - II<xlnl _ xln - II<rp ~nl _ rp ~n - II, (45) 

_ €n - II<xln - II<rp ~n - II (46) 

hold for n<m. 
Proo/by induction: Suppose (45) and (46) hold for 

n <m - 1. Then by Lemma 3 and Lemma 6 and Eq. (34), one 
has 

_ €n + II + €Inl = !!.J.. In [(1 + exp ( _ €nl))! 
2 

136 

X(1 + exp ( _ €In - II))] 

+ §In [(1 +exprp\nl)!(1 +exprp\n-I I] 
2 

<_I In G [1 + exp x
lnl 

] 
2 1 + exp xln - II 
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+ _0 In I 
G [1 + expylnl ] 

2 1 + expy\n-I I 

= (xln + II _ xlnl) 

< Go In/(rp inl) 
2 

+ Go In/(rp ~nl) 
2 

< Go In/(rp ~nl) 
2 

+ Go In/(rp ~nl) 
2 

= rp ~n + II _ rp ~nl. (47) 

Similarly one can show that (46) holds for n<m. This com­
pletes the induction. 

Now we can prove Theorem 1 by induction. It is easy to 
show that the inequalities (15) and (16) hold for n = 0,1. Sup­
pose it holds for n<m; then it is obvious from (14) that 

€ml<€m+ II, 

rp ~ml<rp ~m + I), v>2, 

as Go and GI are positive. Thus it remains to show that 

rp \ml<rp \m + II for v = 1. 

Now by Lemma 3 and Lemma 7, 

= 
_GI In 1 + exp ( - €m - II) _ €2ml + €\m - I I 

2 1 + exp( _ €m - 21) 

+ Go In ( 1 + exp rp\m - II ) 
2 I + exp rplt - 2) 

< § In/(m ~m - II) 
2 T· 

+ Go In/(rp \m - II) 
2 

= rp ~ml _ rp ~m - II. 

Similarly one can show that 

_ €(m - ll<rp ~m - II. 

Then 

rp \m + II _ <p \ml = § [In (1 + exp rp~m - 11)1 
2 

X (1 + exp rp~m - I I) ] 

- Go [In (1 + exp ( - €2ml))I 
2 

X(1 +exp(-€Im-I)))]>O. 

This completes the proof of the theorem. 

I~PROOFOFTHEOREMS2AND3 

(48) 

(49) 

(50) 

(51) 

(52) 

Proof of Theorem 2: First we will prove that rp~1 are 
bounded above. Let us define 

for the nth iteration. Consider the equations 

XI =! In (1 + expx2)' 

(53) 

x,,=pn(l+expx,,_d(l+expx,,+I)' v>2, (54) 
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whose solutions Xv satisfy 

Xv = In [v(v + 2)]. 

Now it is obvious that 

q;~1 <Xv' 

Suppose 

q; ~I <Xv for n<m. 

Then 

;P~m + II <! In [(1 + exp ;P~m~ I) 

X(l +exp;P~"1I)] 
<pn [(1 + expx v _ l ) 

X(l+expxv + I )] 

Thus by induction, for all values of n 

tp ~I <Xv = const. 

(55) 

(56) 

(57) 

(58) 

(59) 

and tp ~I is bounded above. To prove E Inl is bounded below, 
one notes that from (14), 

E lnl > - A + p2 - !GI In (1 + exp( - Eln - II)) - C, (60) 

where 

C = In (1 + exp XI)' (61) 

Consider the equation 

f(p) = - A + p2 - ~GI In [1 + exp (- f)] - C 

=F(f). (62) 

It has been shown that (62) can be solved by iteration and the 
solution satisfies 10 

(63) 

Thusf( p) < EIOI . Since F is an increasing functional off, (60) 
and (62) imply 

EIII>F(EIO))>F(f) =f(p) 

E(21)F(E(I))>F(f) =f(p), (64) 

and so on. Therefore 

(65) 

and E Inl is bounded below. This completes the proof ofTheo­
rem 2. 
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Proof of Theorem 3: By Theorems 1 and 2, the limits 

lim ~nl(p) = E(p), lim tp ~I(p) = tpv(p) (66) 

exist. It can easily be seen that the sequences approach the 
limit uniformly and that E(p), tpy(p) satisfy (lla)-(lld). The 
boundary condition is also satisfied by (66). This completes 
the proof. 

V. CONCLUSION 

I have shown in a previous paper that the thermody­
namics of the fermions of the delta-function model is deter­
mined by the integral equations (lla)-( lId). In this paper, I 
show that the solutions of (lla)-( lId) exist in the case of 
negative potential and zero magnetic field. The proof is 
based on the fact that the iterations ~nland tp ~I of (14) are 
monotonic bounded sequences and thus approach the solu­
tions of( 11a)-( lId). For positive chemical potential and non­
zero magnetic field, one can take the initial iteration 
tp ~I = 2VA but the sequences ~nl and tp~1 are no longer 
monotonic. It is believed that they will still converge to the 
solutions of (lla)-( lId) though it cannot be proved by the 
procedure here. 
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1. INTRODUCTION 

Van den Berg I derives heuristically the equation of state 
and the barometric formula for a one-dimensional free boson 
gas in a weak external field of power form. These results are 
made rigorous by Lewis and Yen den Berg. 2 The aim of this 
paper is to give simple proofs of these results for a very wide 
class of potentials. 

We distinguish between Bose-Einstein condensation, 
in which the total condensate is in the ground state so that 
the ground state is macroscopically occupied, and general­
ized Bose-Einstein condensation in which the condensate 
occupies the low-lying energy levels without any of these 
levels being necessarily macroscopically occupied. A de­
tailed study of generalized Bose-Einstein condensation is 
now in preparation. 31t is clear from the paper of Landau and 
Wilde4 that the equation of state does not distinguish be­
tween the two types of condensation but depends only on the 
distribution of eigenvalues of the single particle Hamiltonian 
in the large volume limit. In Sec. 2 we obtain this limit distri­
bution by Dirichlet-Neumann bracketing. The techniques 
used by Davies5 can be adapted to give the same results but 
we think that the method used here is much more direct. 

In Sec. 3 we consider the scaled distribution of the bo­
son gas in the thermodynamic limit. We obtain the baromet­
ric distribution of the normal fluid and show that on the 
same scale the condensate is concentrated on the set of abso­
lute minima of the potential. 

To avoid unnecessary repetition we use the notation of 
Ref. 6. We are grateful to Professor J. T. Lewis and Dr. M. 
Van den Berg for many discussions on this problem and to 
Professors A. Verbeure and J. Messer for making available 
their manuscript on the treatment of this problem by corre­
lation inequalities. 

2. THE EQUATION OF STATE IN THE THERMODYNAMIC 
LIMIT 

Let A I be a bounded open region of R V of unit volume 
whose boundary aA I is piecewise continuously 
differentiable. 

For each L > 0 let A L be the region A L = I xERv 
: 

L -lxEA Il. TakeHL to be the self-adjoint operator on Jr"'L 
= L 2(A L)determinedby -!.J + V(xIL )andtheDirichlet 

boundary condition. We assume that Vis a nonnegative con-

-IPostal address. 

tinuous function defined on A I . Let E f <,E i <,E f <, ... be 
the eigenvalues of HL and lifJ; : n = 1,2,3, ... l the corre­
sponding eigenvectors. 

Our objective in this section is to find the pressure in the 
thermodynamic limit 

1 00 [ f3E I ] Pfi = lim - -- I In 1 - z(L )e - k, 

L~oo {3L v k ~ I 

(2.1) 

where the fugacity z(L ) is determined by the constant density 
constraint 

_ I! z(L) 
P = Lv k ~ I ?E( _ z(L) . 

(2.2) 

Equivalently, if we put 1Jt = Et - Ef we require 

Pfi= lim __ 1_! In[l-s(L)e- f3'7i], (2.3) 
L~oc {3L v k~ I 

where S (L )E[O, 1) is the unique solution of 

- I! s (L) (2.4) 
P = Lv k ~ I ?'7t - s (L ) . 

If we define the distribution function F L on [0,(0) by 

F L(1J) = _1_ maxI k: 1Jt<'1J J, 
c"L v 

where c,' = TvhrV2V12, Tv being the volume of the unit ball in 
RV

, then 

Ll v '7~ f(1Jt) = Cv i f(1J)FL (d1J). (2.5) 

If in additionfis continuously differentiable on (E, (0) and 

11 -"'00 

~ I f(1Jt) = - Cv roo f'(1J)[F L(1J) - FL(E)] drJ. 
L 7}k>€ J£ 

(2.6) 

From the work of Landau and Wilde4 and (2.6) it follows 
that to find the equation of state it is sufficient to find 
limL +

oo 
FL (1J). This is done in the following lemma. 

Lemma 1: If Ef-D as L-oo the limFL(1J) = F(1J), 
L~oo 

where F(1J) = f V(x) <'7 [1J - V(x)] 1'/2 d Vx. 
Proof Let GL(E) = maxlk: E~<,E land IB;: 

nEl_l be the set of cubes in R V of the form [L - 1/2a p 

L -1/2(a l + I))X ... X [L -1/2av ' L -1/2(av + 1)), with aI' ... , 

avEZ, which intersect A I and let I B; : nEl + l be the set of 
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those cubes that are contained in AI. Also let 

A ~ = LB~, + V~ = sup V(x/L) = sup V(x) 
xEA ~ XEB; 

and 

~ {:f, VlxlL) if ALCAL 
V L n _ , 

- n 

if A ~~AL, 

~L~' Vlx) 
if B~~AI, 

if B~~AI. 

Denote by + V L (respectively _ VL) the piecewise constant 
function on unE1 • A ~ (respectively unE1 A~) with value + V~ 
(respectively _ V~) in A ~ and by +..1 (respectively _..1 ) the 
Laplacian with the Dirichlet (respectively, Neumann) 
boundary condition on the boundary of each A ~ nEl + (re­
spectively 1_). Let + G L (E) [respectively _ G L (E)] be the 
distribution of the eigenvalues of - !(+.d ) + + VL[respec­
tively, - !(_.d ) + _ VL] Then by Dirichlet-Neumann 
bracketing (Ref. 7, Theorem XIII. Eq. 15) 

_GL(E)>GL(E)>+GL(E). (2.7) 

Now 

(2.8) 
ne/ ~ 

+ V;<E 

where TJ + is the distribution of the eigenvalues of the Lapla­
cian on the unit cube with the Dirichlet boundary condition. 
By Ref. 7, for TJ + there is a constant C + such that 

TJ+(E)>cvEvI2 - c+(1 _ E IV-I)/2/2lv- I)/2). 

Therefore 

( 
(E VL)IV-I)l2) 

" 1 + L Iv - 1)12 - + n • 
£.., 2Iv - I )/2 

nel+ 

(2.9) 

Similarly 

nEI 

(2.10) 

From (2.9) we see that 

lim inf-1- GL(TJ + Ef)>cvJ [TJ - V(X)]VI2 dx, 
L~oo LV 71> Vlx) 

and from (2.10) 

lim sup_1_G L(TJ + Ef)..;cvJ [TJ - V(X)]VI2dx. 
L~oo LV 71> V(x) 
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Since FL(TJ) = (llevL V)GL(TJ + Et) the lemma follows: • 

Let H~ be the Dirichlet Laplacian on A L. It is know 
that if G ~ is the distribution of eigenvalues of H ~, 
1im;.~oo G 6 (A )/..1 v/2 = Cv and therefore G 6 (A )/..1 v/2 is 
bounded by say c. Now H~ ..;HL and so 

G L (TJ) ..; G ~(TJ) = G 6 (L 2TJ) TJVl2 < CTJ v/2. 
LV LV (L 2TJ)v/2 

Thus 

FL (TJ) < ~ (TJ + E fr/2· (2.11) 
Cy 

Therefore iff' is continuous and bounded on (E, 00) and 
f'(TJ)TJ v/2 is integrable at infinity, by the Lebesgue dominated 

convergence theorem we deduce from (2.6) that 

lim ~ I f(TJr) = - Cy (00 f'(TJ) [F(TJ) - F(E)] dTJ. 
L~oo L T/k>E JE 

Using these results the next theorem follows immediately 
from Ref. 4. Let Pc"; 00 be defined by 

(00 ePT/ 
Pc =f3cy Jo (ePlI _ If F(TJ) dTJ 

= 1 f dVxgvde-/3V,X)), (2.12) 
(21Tf3 )v/2 A' 

where g,(s) = I.: = 1 (s"/n'). 
Theorem 1: When the mean density p is less than Pc, the 

grand canonical pressure, PP' is determined parametrically 
as a function of p by the pair of equations 

- _ a (00 ;ePT/ F() d 
P - fJCv Jo (ePT/ _ ~ )2 TJ TJ 

= 1 f d Vx gvl2 (;e - /3VIX)), 
(21Tf3 r/2 A' 

f3pp = f3cv 100 

(ePT/ ~ ~) F(TJ) dTJ 

1 f d v (F -/3Vlx)) = xgl+v/2~e. 
(21Tf3 )V12 A' 

Ifpc is finite andpis greaterthanpc thenpp is independent of 
p and is given by 

(00 1 
f3pp = f3cv Jo (ePlI _ 1) F(TJ) dTJ 

1 f d v ( - /3VIX)) = xgl +vI2 e. 
(21Tf3 )v/2 A' 

Proof It is clear that if p <Pc, ~ (L )-t. where tis the 
unique solution in [0, 1) of 

1
00 ;ePT/ 

P = f3cv _8 F(TJ) dTJ, 
o (e- 71 - ~) 

while if Pc < 00 andp»pc' ~ (L )_1. Since 

- ~ ! In(1 _ ~e-tM) 
f3L k= I. 

_ C (00 ~ F (71) d71 
- v Jo (ePlI _ ~ ) L'/ ./ 
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is uniformly convergent, for b'E[O, 1 - b ], 8> 0, to 

l oo b' 
Cy F(7])d7], for p <PC' 

o (efi'l- b') 
the result follows without difficulty. 

For P~Pc we use the inequality of Theorem 4.2 of Ref. 
4, viz. for € > 0, 

2p F () 
< ePb' (L )e - /3, L € , 

which tends to zero as € W. But 

converges uniformly for b'E[O, 1], which proves the result in 
the second case. • 

Note that if Pc < 00 we have a phase transition in the 
sense thatpp has a singularity atp = Pc' As was noted in the 
Introduction, this result is independent of how b' (L ) con­
verges to 1 in the casep~pc and therefore is independent of 
(l/L y);(L )/[1 - b'(L)], which is the occupation density of 
the ground state. The ground state need not be the only ener­
gy level in which there is macroscopic occupation; in Ref. 2, 
for example, there are an infinite number oflevels macrosco­
pically occupied. On the other hand, there may not be mac­
roscopic occupation of the ground state or any other level. In 
the following theorem we give a condition for the ground 
state, and the ground state only, to be macroscopically 
occupied. 

Theorem 2: Let Pk (P! be the occupation density for the 
k th energy level, i.e., 

1 b'(L) 
pdP! =--z; ~'1i -b'(L) 

Suppose that v~ 3 and E r I(E r - E f) < K < 00. Then, for 

P~Pc' 

lim PI(P! =p -Pc 
L--- 00 

and 

lim pd P! = 0, k =I l. 
L~oo 

Proof To prove this theorem it is clearly sufficient to 

show that (l/L Y)~k~2 [b' 1(~'1t - b')] converges uniformly 

for b'E[O, 1]. 

1 ~ b' -pc loo b'efi'l (FL() - ~) d 
-y L B L - Y ( _8'1 r )2 7] 7] L k ~ 2 e 'I. _ b' 0 e-" - ~ Cv 

and 

< C7] V12(1 + LET L)V/2 
E2 -EI 

< C7] v12( 1 + k v/2). 

Since, for v~3, 7]v12 - 2 is integrable at zero this gives the 
required uniform convergence. 

3. THE SCALED DENSITY DISTRIBUTION 

In this section we investigate the spatial distribution, 
scaled in a suitable way, of the boson gas in the thermody­
namic limit. For A ~A 1 let 0(A ) denote the fraction of the 
total number of particles which is in LA, i.e., 

';'(A) = _1_ (I b'(L) ItP t(xW dVx 
pL v 1A k ~ 1 [~'1t - b' (L )] 

=~ I b'(L) (ItPt(xWdvx. (3.1) 
P k ~ 1 ~'1k - b' (L ) L 

If we define the distribution function F ~ on [0, 00 ) by 

F~(7]) =~ I (ItPt(LxWdVx 
Cv '1(''''1 JA 

then 

0(A) = Cy (00 b'(L) FL (d1'l). 
P Jo efi'l _ b' (L ) A ./ 

(3.2) 

For technical reason we consider only A 's that are open and 
whose boundaries have zero Lebesgue measure. The result of 
this lemma coincides with that of Lemma 1 if A = A 1 but the 
proof of Lemma I does not require Wiener integration 
techniques 

Lemma 2: lim F~ (7]) = FA (7]), 
L--~ 00 

where 

F(7]) = ( [7] - V(x)] Y12 d vx. 
JV(X)<'1 
x~ L 

Proof The kernel of the integral operator e - IH is 
G L(X,y; t ), where 

GL(x,y; t) = pix - y; t )IE{ exp{ - [ V(y + x(1")) d1} y + X(1")E A L, O<1"<t Ix(O) = 0, x(t) = x - y}, (3.3) 

where 

pix, t) = (2m) - V/2exp ! - IIxll 2/2t j (3.4) 

and IE!·j denotes the average value for all paths x(·) of a Wiener process on R
Y 

8 

i oo lEt i 
C

v 
e- I'IF~ (d7]) = _e_ GL(x, x; t) dYx. 

o L v LA 

(3.5) 

Following Ray8 and using (3.3) and Jensen's inequality, we have 
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_1_1 GL(x,x;t)dvx<_1_1 dVx 1 ~I'drE!exp!-tV(x/L+x(r)/L)l; 
LV JLA LV lA (21Ttt/2 t Jo 

x + x(r)eA
L
, O<r<t Ix(O) = x(t) = 01 

1 ~ r dtE{_l I dvxexp(-tV(~+ x(r))]IX(O)=X(t) =01 
(21Tt )"12 t Jo L V JxELAnXL _ x(r) L L 

= 1 ~ tdtE{1 dVxexp[-tV(x)]IX(O)=X(t)=O}. 
(21Tt )"/2 t Jo LEA 'CIA + x(r)IL 

The last expression tends to 

1 ~ r dt E{ I d "x exp[ _ tV(x)] Ix(O) = x(t) = o} = 1 I d Yxe - ,V(x) = Cy I'" e - 'TfFA (d1J). 
(2m )y/2 t Jo JXEA (21Tt)"12 JA Jo 

Using the notation of Lemma 1 let ! B ~: neI 1 be the set of B ~ contained in A. Then 

_1_ I GL(x,x; t) dVx = 1 I dVx E{exp (_ r v(x(r)) dr], x(r)EA L Ix(O) = x(t) = xl 
L v lA L "(21Tt )v12 JLA Jo L 

> I L ( dYxE{exp [ - r'v(x(r)) dr],X(r)EA ~lx(O) =x(t) =x} 
L V(2m)"12 nEi L ~ Jo L 

> 1 L e-" V~ I dVx Ell, x(r)EA ~lx(O) = x(t) = xl. 
L "(2m )vl2 nEi )A ~ 

There exists a constant C such that 

1 12 I d "x Ell, x(r)EA ~ Ix(O) = x(t) = x J > ~/2 I 12 (1 - C t 1
1
'(4

8
), 

L "(21Tt )" I .. ~ L" (217"t)" L 

This can be extracted from Arima,9 Mizohata and Arima,1O Van den Berg,2 and various other sources. Therefore 

1 f G liS'" lim - -(x,x; t) d vx> d "xe - IV(x) = Cv e - ITf FA (d1J). 
L~oo L" LA L (21Tt )"/2 A 0 

Hence 

Loo e-ITfF~(d1J)--+Looe-ITfFA (d1J), 

which means (see, e.g., Ref. 11) F~(1J)--+FA (1J). • 
Lemma 3: LetAo = [xEA 1 : V(x) = OJ and suppose 

AnAo = 0; then there exists co> 0 and C > 0 such that for E;; 
<Co' xEA, L vI21~;;(Lx)1 <C(E;;)"/4. 

Proof Since AnAo = 0 we can find a /5 > 0, u> 0 such 
that V(x + y»8iflyl <uandxEA. Let Co <8 /2 and suppose 
Ek <c. Using Eq. 8 of Ref. 8 we have 

e- IEil~ ;;(Lx) I 

<E{exp [ - Sa' v(x + Xi))] I~ ;;(Lx + x(t ))1, 

Lx + x(r)EA L} 

«e::r/4E{exp[ - l' v(x + xt))], 

+ Prob[maxllx(rlll >LuJ] 

«eE;;)V/4[e_"" + 3i PlY, t)d vy ], 
1TV Iiyll > Lu/4 

using Lemma 2 of Ref. 8. Therefore 

I~ ;;(Lx) I « e:: r/4
(e - (.5 - '0)' + 3 (2v/l)e - (L '£1'164/' - ~o)/) 

By choosing t 2 = L 2~ /640 we obtain 

I~ hLx) I « e:: )"/4 [1 + 3 (ZV/2)]e - Lu/161l'12 

<C(E;;)"/4/L vl2. 
Theorem 3: If p <Pc then 

lim V- (A) = .Bcv (00 (eft
Tf 

FA (1J) d1J, 
L~oo p)o (eft'l _ ~)2 

where (is as in Theorem 1. 
Ifp>pc, then 

lim v-(A) =.BCy 1
00 

eft
Tf 

FA (1J) d1J 
L~oo p Jo (eftTf - If 

Lx +x(r)EA L}, 
ifAnAo = 0, 

using the bound for II~ ;; 1100 in Ref. 12, 

(
eEL)V/4 

< 1TV
k 

[e-""Prob[maxllx(rlll <LuJ 
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Proof If P <Pc the result follows immediately from 
Lemma 2. Suppose p > Pc and AnAo = 0 and let 

V;(A ) = 1- ~ F (L ) f ItP f(LxW d "x. 
P l1t.~l1· - ;(L) L 

Then again by Lemma 2 V;(A ) tends to 

1 pr" f"" ePl1 
P 1T"2"/2 J. (ePl1 _ 1 f FA (1J) d1J. 

However, 

0(A)-V;(A) 

= ~? F(L) i ItP r(LxW d"x 
p 11. <E ~11. _ ; (L) A 

<CE,,/4 

if E is small enough and the required result follows. 
If AoCA, 

o (A ) = 0(A I) - 0 (A I - A ) = 1 - 0 (A I - A ) 

1 pr r"" ePl1 
-+1 - P 1T"2:/2 Jo (ePl1 _ W [F(1J) - FA (1J)] d1J 

Pc pc" 1"" ef311 = 1 - -=- + -=- FA (1J) d1J. 
p p 0 (ePl1 - 1) 

Finally, under the conditions of Theorem 2 we prove that the 
condensate density is concentrated at the zeros of the 
potential 

Corollary 1: Suppose v;;;.3 and E ~ I(E ~ - E f) < K < 00 

and let 

vt(A) = ~ E(L) f ItPr(LxW d"x; 
p ~11. _ ; (L ) JA 
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and 

lim vf(A) = 0 ifAnAo =0, 
L~oO 

= (1 - ~) ifAo~A. 
Proof To prove this corollary it is clearly sufficient to 

show that 

1"" (ePf~11;)2 (F~(1J) - c
1
" i ItP f(LxW d"X) d1J 

converges uniformly for ;E[O, 1]. Since F~(1J)<FL(1J) this 
follows as in Theorem 2. 
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Renormalization group hypothesis for critical phenomena theorya) 
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We give various "nonperturbative" results for strong coupling, ultraviolet cut-off removed limits 
of the bare mass in go:tP 4:d , lattice cut-off, boson field theory. We find that the renormalization­
group, unique, strong-coupling, zero-lattice-spacing, double-limit hypothesis has some 
remarkable consequences, which seem difficult to reconcile with other available information. 

PACS numbers: IUO.Gh, 03.70. + k 

The results I of the renormalization group approach2 to 
the theory of critical phenomena have been in fairly close 
agreement with the predictions of the more traditional meth­
ods.3 A close inspection,4 however, shows that there may be 
small but persistent differences. These differences are most 
apparent5 in a particular family of relations between the ex­
ponents which describe the rate of divergence (or vanishing) 
of the various physical quantities at the critical point of the 
system considered, e.g., a ferromagnet. The explicit appear­
ance of the spatial dimension in such an exponent relation is 
the signature of this group of relations, and the family is 
called the hyperscaling relations. 

Baker and Kincaid6 have emphasized that the renor­
malization group theory of critical phenomena is based on a 
double limit hypothesis. The purpose of this paper is to begin 
an investigation of this hypothesis. To this end we will exa-, 

mine the behavior of the "bare mass" in various strong bare 
coupling limits and obtain several results. We will work in 
the context of a Euclidean, lattice cut-off, go:tP 4:d boson field 
theory, which is equivalent to a continuous-spin Ising mod­
el. We use d to denote the spatial dimension. 

In this paper we compute (based on a monotonicity 
property of the critical temperature) bounds on various 
strong-coupling continuum limits for the bare mass, and on 
the basis of the renormalization group hypothesis derive a 
remarkable formula for the amplitude of the correlation 
length. This formula implies that there is a particular value 
of the parameters at which there is singularity in this ampli­
tude. 

Although extension to other lattices is no problem, we 
will consider explicitly the hyper-simple-cubic family oflat­
tices. The partition function is 

f + 00 f N - I [1 N - I { (A. A. )2 2} - I d 'f'i - 'f'i + Ii 2 2 4 
Z(H) =M ... II dtP,exp - -a L I, 2 + mo:tPl: + -go:tP;: + I,H;tP;, 

-00 ;=0 2 1=0 (61 a 4!; 
(I) 

where N is the number of lattice sites, a is the lattice spa­
cing, { 6} is the set of unit vectors parallel to each of the d 
lattice directions, the: : imply the usual, field-theoretic, nor­
mal-ordered-product for fields of mass mo and Hi is the mag­
netic field at site i. The formal constant M is meant to impose 
the condition Z (0) = 1. This partition function is written in 
such a way as to be a lattice cut-off field-theory. The renor­
malization group hypothesis for this model can now be stat­
ed as the double limit go- 00 , a-D of the field theory formal­
ism exists and is independent o/the"order of approach. More 
specifically, we are referring to what appears to be the calcu­
lationally most advanced version of the renormalization 
group; that is the Callan-Symanzik formalism expounded 
for example, by Brezin et al.2 Examples of the unique double 
limit hypothesized are g*, 17(g*), 172(g*), and W (g*) (also 
calledf:1 (g*) by many authors). Here in the calculations so far 
reported by them, some version of this hypothesis and in 
addition, a certain amount of smoothness and differentiabil­
ity near this point, is required for the various quantities 
which connect the "bare" parameters go and the renormal­
ization constants with the renormalized ones. To complete 
the theory, the hypothesis will also be needed for various N 

alWork performed under the auspices of the U.S. DOE. 

point vertex functions, but serious calculation of these more 
elaborate quantities is currently more often a question of 
principle than practice. We will briefly discuss below one 
example and show that it relates to the bare mass. Although 
the bare mass is not "universal" its examination does begin 
the study of the key hypothesis and may perhaps suggest 
directions for further investigation. 

If we perform the usual amplitude (Z3) and mass renor­
malizations6 (m6 = m 2 + 8m2

) then we can rewrite (1) as 

Z (H) = if - If - 00 ••• f .IT duiexp[r.K }' UiU; + I) 

+00 1=1 I lui 
4 - -] -gou; -A~+Hu; , (2) 

where M is a new normalization constant, and the relation 
between the field theory language of (1) and the statistical 
mechanical language of (2) is6 

go = gr/(2a4 
- d /24, 

A = !K (2d + m 2a2 + 8m2a2 
- !Ca2go), 

H = Hi [Ka2 - d ]1/2. (3) 

The constant C is the commutator [tP -, tP +] which 
arises from the reduction of the normal ordered products 
:¢I' :, and in the limit of an infinite system is given by 7 
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1 f rr/2a f dk 
C= (l1f -';~2a m6 +4a-2~16J sin2(k.fla)· (4) 

The normal ordering is performed with respect to the bare 
field, so m6 appears in (4). We require m6;;;'0 to keep the 
integral in (4) from being singular; ho~ever, as we wiII see 
later, this restriction does not restrict A as it can stiII range 
from - 00 to + 00, d;;;.2, and, of course, we will find no 
problem for d < 2. We have introduced a free parameter, K. 
We use this extra degree of freedom to impose the condition 

f ~ :: dx x2 
exp( - goX4 

- 1x2
) (5) 

(c?)H~K=O = 1 = - 2 ' 
S ~ :: dx exp( - goX4 

- Ax ) 

which determines 1 as a function of go' As long as 
0< (¢ 2) < 00 for the cut-off field theory we may always im­
pose (5) by an amplitude renormalization. For large and 
small values of go, 1 (go) has the expansions 

1 (go) =! - 6go + 48g6 + Ow~), go<I, 

= - 2go -! - $0- 1 - ft$0-2 + O(g-3), go>l. (6) 

It is convenient to employ the following statistical me­
chanical notation (j lies on a lattice of unit spacing) 

N-I 

X = I (0'00 ), 
j=O 

N-I 

52 = Il(0'00'j)/(2dX), (7) 
j=O 

where X is the magnetic susceptibility and 5 is the dimension­
less correlation length (number of lattice spacings), second­
moment definition. Then the usual field-theoretic, renor­
malization condition, 

r~l(p, -pI 

={adNil a2

InZ(H) I eXP(-iP.ja)}-lz3 
j=O aHoaHj H=O 

~m2 + p2 + "', as p-o, (8) 

leads to the relations6 

m252a2 = 1, 

Z3 = K(x/5 2
). (9) 

As partial motivation for studying the bare mass, we 
note that one of the important critical indices can be derived 
directly from the bare mass 

m6 =a-2 [2
1: 0

) -2d+!Ca2goJ, (10) 

which follows trivially from Eq. (3). The essential ~:¢ 4: na­
ture of the theory is now built explicitly into the functions 
1 (go) and K (a,go)' K actually depends on ma instead of a, but 
we wiII not write the m for simplicity of presentation, as m 
will usually be taken to be unity in what follows. If we follow 
Brezin et al. 2 and define 

Ro(go,a)==a2ro==m6a2 - !Ca2go = 2A (go)lK - 2d, (11) 

by (10). Then it follows easily that if 

5a:.(Kc _K)-V, K-Kc-, (12) 

then for 

Q = Z 121/Z3 = a- 2[Ro(go,a) - RoWo,O)] 
= 2A (go)(K -I - KcWo)-I)a- 2, (13) 
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we have the result that (1 {go)¥O), 

lim a a(ln Q) I = - 2 + l/v. (14) 
a-Q aa g" 

The renormalization constant Z (2) is that for ¢ 2 insertions 
(Brezin et al. 2

). 

In Fig. 1 we show the various strong-coupling limits 
with which we will be concerned. Remember, in field theory, 
the natural mode of calculation is [(flin Fig. 2] gom d - 4 

varying along the line 5 - 1 = a = 0 (51 = 1), and the goal of 
the field theoretic approach is to reduce any calculation to 
one of these types of calculation. In the mode of presentation 
in Fig. 1, this line is contracted to the upper left-hand corner 
and the field theory point go = 00, a = 0 is the whole top 
border. We have replotted in Fig. 2 the same picture in natu­
ral field theory variables. The abscissas are implicitly related 
by Eq. (3). In the statistical mechanics of critical phenomena, 
the natural mode of approach is to reach the line 5 - 1 = 0 
along a vertical path in Fig. 1, e.g., paths (a) or (b) in Figs. 1 
and 2. 

Now it is usual in the framework of the renormalization 
group approach2 basically to project path (b) (a typical statis­
tical mechanical one) on the top border in Fig. 2 in such a 
way as to be able to use the cut-off removed field theory. To 
clarify the relation of the approach to Eq. (14), we use the 
chain rule of partial differentiation to "tum" the direction of 
the derivative in (14). This procedure is claimed to be plausi­
ble in the renormalization group approach because it is cor­
rect order-by-order (d < 4) in perturbation theory, and so 
holds for go sufficiently small, i.e., for path (e) of Figs. 1 and 
2. Thus, writing by use ofEq. (3), 

Q(go,a) = Q(24g00d
-

4K -2,a), (15) 

we have 

aaQ I = 24(d - 4)goOd-
4K -2(aQ ) + a(aQ ) 

aa g" ago a aa go 

= (d - 4)go(a
Q

) 
ago a 

[( aQ ) _laKI (aQ )] +a - -2K - go - . 
aa go aa go ago a 

(16) 

Then, combining (13), (14), and (16) with the assumed, con-

0<tLo------------;1.O 
Go 

FIG. 1. Various different strong coupling, ultraviolet cut-off removed lim­
its. Here tl = S 2/( I + S 2), Go = go/( I + go). (a) is the Ising limit, 
go = go = 00, a-+o. (b) is a typical statistical mechanical proble~, go fi~ed, 
a-+O. Ic) is the case a = 0, Ko---' 00. (d) is the case a = 0, go-+O. (e) IS a typIcal 
field theory problem 0 <go < 00 fixed, a-+o. It is illustrated here for d = 2, 
and go determines the slope of the line. ( f ) a = 0, go---. 00 is completely 
contained in the upper left hand corner. 
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c,d 
1.0 r-----,----------------__;�/ 

/-
0.0 '-------------~ 

0.0 Go 1.0 

Fig 2 

FIG. 2. Various different strong coupling, ultraviolet cut-off removed lim­
its. Here ~ 1 = 5 2/( 1 + 52), Go = gomd - 4 I( 1 + gomd - 4). (a) is the Ising limit 
go = go = 00, a->o. (b) is a typical statistical mechanical problem go fixed, 
a->O, illustrated here for d = 2. (c) is the case a = 0, go"" 00 and (d) is the 
casea = O,g,,->O. Both cases are contained in the upper right-hand comer of 
the figure. (e) is a typical field theory problem 0 <go < 00 fixed and a->O. ( f) 
is the usual field theoretic strong coupling limit a = 0, go .... 00. 

tinuous differentiability at a = 0, go = 00, we have the renor­
malization group result 

- 2 + 1/v. (17) 

In other words, in Fig. 2, paths ( f) and (b) will yield the same 
result as (JQ / Ja)go is assumed finite in and at the upper right­
hand comer of Fig. 2, so that the limit as a-o of a(JQ /Ja)go 
vanishes. Likewise the last term in (16) vanishes because 
(J In K / J In a) vanishes as a-o. 

Thus, under that hypothesis we get the same result for 
the field theory approach ( f) and the statistical mechanical 
one (b) and even (a) which is assumed to be a uniform limit of 
paths of type (b). 

We begin by exploring various strong-coupling limits of 
m~. First the spino! Ising limit,8 with go- 00 and a fixed can 
be given. Here go- 00; thus combining the expansion of 
A (go), Eq (6), with Eq. (10), we have (keeping a fixed) 

lim [m6a2 + K -I + 2d + !goa4
-

d BK - Cad
-

2
)] = 0, 

go-oo 

(18) 

m~, K, and C are all functions of both a and go. Inspection of 
(18) shows that the coefficient of go must be negative of zero. 
Physically, we must have m~;>O so C can be defined by (4) in 
a nonsingular manner. 

We need to consider in detail the behavior of C as a 
function of m~ and dimension. Figure 3 shows a sketch of its 
behavior. Following the methods of Montroll and Weiss,9 if 
we use the identities 

sin20=!(1-cos20), Io(z)=..!.. (1T ezcos(JdO, (19) 
'IT Jo 

b -I = 100 

e-bYdy, 

then we can write 

C= !a2
-

d i oo 

dye-lmiia'Y[e-Ylo(y)]d. (20) 

Now as 
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d-2 
Co 

d ., 2 

0.0 L-______________ -' 

0.0 

m~ 0
2 

FIG. 3. Sketch of the behavior of ad- 2 C(m~a2) for the two casesd<2 where 

C (0) = 00 and d > 2 where C (0) is finite but always bigger than Kc 13, where 
Kc is the Ising model critical point. 

lZ2 
Io(z)~l + ...£..... + ... z<l 

(l!f ' 

eo-Zlo(z)~(2'ITz)-1/2(1 +..!..+ ... ) z>l, 
8z 

we can give the estimates 

a2 - d 

C~--, 
m~a2 

~ a2
- dc(d), 

'"" a
2

-
d

(moll)d-2 F(l -ld). 
4(1T)dI2 2 

_ -In(moll) 

21T 

where 

is a convergent integral for d> 2. 

(21) 

(22) 

(23) 

(24) 

With these asymptotic results for C, we are in a position 
to analyze the limit (18). As go- 00 for fixed a > 0, we expect 
and can prove over a limited region that K (a,go) 
_K (a$o = go = 00), the Ising model case. Since7 3 c(d) 
> Kc > K (a > 0) for d = 2,3, ... , we see from Fig. 3, [or more 
formally from Eqs. (22)-(24) and continuity] that there is a 
finite, nonzero value of m~a2 which solves 

Cad
-

2 
- jK(a,oo) = O. (25) 

If we perturb this solution by an amount of order (1/ 
goll4 - d) then we can make the [ ] in Eq. (18) vanish. Thus 
the limit of m~a2 as go- 00 is given by the solution ofEq. (25). 
The limiting value, lima--+o limgo_ oo m~a2, is then the solu­
tion of 

where Kc is the critical value for the Ising model and has 
been determined numericallylO to be 0.440 68 .. ·(exact), 
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0.221 71,0.14988,0.11403, and 0.09236, ford = 2-6. This 
result, Eqs. (25) and (26), gives the behavior of the bare mass 
as a function of lattice spacing in the Ising model or strong­
coupling limit. R 

The limit in the field-theory direction [path (e), Figs. 
and 2] a-o, with go fixed gives, 

lim m~ = lim( 2A (go) ~ 2dK) + ~olim C. (27) 
a-O 0-0 Ka 2 a·..{J 

Necessarily go-o in this limit and upon expansion, this for­
mula must reduce to the usual, lattice-cut-off, bare coupling 
constant expansion for the bare mass, to which we do not 
make any further contribution. In fact, one could use the 
usual field theory perturbation expansions to provide an ex­
pansion of the K (a = 0, go) in powers of go by means of Eq. 
(27). 

We can, however, compute some further go- 00, a-O 
limits. They are characterized by go = const, a-o [path (b) 
in Figs. 1 and 2]. If we rewrite Eq. (10) as 

m6a2 = (12/K2)go(Cad- 2) - 2d + 2A (go)/K, (28) 

then we may deduce that lima...om~a2 is finite forO <go < 00. 

If go-oo, [path (c), Fig. 1], then, as in Eq. (18) we find that 
the coefficients of go must cancel so we get 

lim { [~ r" dye - ('/2Im1,a'Y(e - y lo( y))d] - ~K tgo> a = OJ} = 0 
&,-00 2)0 3 

(29) 

determines the value of m6a2(go). As we have no reason to 
suppose that limgo_= K (go, a = 0) is not equal to Kc (Ising 
model critical point) we obtain, using that hypothesis, the 
same result here as in Eq. (26). A special case occurs in d = 1, 
as we know from general results that limo_.oK (go,a) = 00 and 
maG~l, Eq. (28) becomes, according to the estimate (23), 

m~a2= 3go _ 2 + 2A (go) . 
K 2moa K 

(30) 

Thus comparing orders of magnitude, 

Iim(~maG/ go) = lim K -2 = O. 
u .0 a __ O 

(31 ) 

Result (31) holds uniformly in 0 <go < 00, so that we can 
conclude 

lim lim (maG/go) = 0, (32) 
g{j-..o a ...0 

and also, 

lim lim (moa) = O. (33) 

In order to extend our study of the limit asgo-o to d-;;.2 
dimensions we first observe 

(34) 

uniformly in go' This remark is, of course, trivial in d = 1. It 
is also trivial for go-;;.(r(3/4)/ r(l!4)f=0.1l4 236 6452, as6 

A (go) ,0 and K-;;.O in the range. Since A (go) is known6 to be a 
monotonically decreasing function of g, and the left-hand 
side of (34) is exactly zero for go = 0 by the well-known solu­
tion of the Gaussian model, (34) will follow from the mono­
tonicity of K (go,a) ingo neara = O. This monotonicity is born 
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out numerically.6 We can See that it holds for very small go 
analytically as follows. For a general hypercubic lattice, Ba­
ker and Kincaid's6 combinatorial data yields for the Wortis 
method" in terms of the renormalized cumulants M n , 

52 = KM2/(1 - 2dKM2(K,go)) + O(~), (35) 

w here use has been made of the results M4= - 4!go, and Mn 
=O( ~), n -;;.6. Thus for go small enough, we obtain 

K (go,a) = [(2d + m2a2)M2(K,go)) -, + 0 (~). (36) 

We may expand 

M 2(K,go) = 1 - 24goS(K) + O(~), 
where we have the high-temperature expansions'2 

S(K) =K2+3K4+ 10K 6 + 35K 8 + ... , 

= 2K2 + 18K 4 + 200K 6 + 24S0K 8 + "', 
= 3K 2 + 45K 4 + 930K 6 + 223 65K H + "', 
= 4K2 + 84K 4 + 2560K 6 + 950 60K 8 + "', 

(37) 

d= 1, 

d=2, 

d= 3, 

d=4. 
(38) 

Now by examining the diagrams which lead to this se­
ries, we find at once that 1 + 2 S (K ) is the generating func­
tion of random walks which begin and end at the origin. 
Thus'3 

1+ 2S(K) 

= _1 d J1r · .. f lldOi(I-2K(Icosoi))-'. 
(21T) -1r i=' ;=, 

(39) 

Manifestly, S (K) is positive by (38) and (39), thus we see 
analytically that K (go,a) does increase with go for go small 
enough. Ifwe now consider (28) for d-;;.3, so that both Kc (go) 
and c(d) are finite, we have by (34) 

m~ a2, (12/ K 2) goc(d ), (40) 

as Cad - 2,c(d). Thus, as K-;;.2d we conclude 

O,lim lim(m~a2/go),3c(d)ld2< 00, (41) 
gn--oO a-----....Q 

as (41) holds uniformly for all 0 <go < 00. 

For the final case d = 2, (Cad - 2) diverges weakly so we 
find from (28), using (23) and again (34) 

(42) 

These bounds (40)-(42) depend on the hypothesis that (34) is 
correct, which in turn follows from the idea that K (go,O) is 
monotonic in go over the range 0<b'0,0.1142. 

If we pick up from (16) and (13) the term which is set to 
zero in the derivation of (17) we have, along path (b), Figs, 1 
and 2, which is appropriate to (14), 

lim a~ {In [2A (go)(K -'(go,a) - K -'(gO,0))a-2]} I g" = O. 
0--0 da 
go fixed 

(43) 

The last derivative term in (16) can be shown, by use of (45), 
to vanish in this limit [assuming (17)] and so is not included 
in (43). Iffurther, in the neighborhood of a = 0, go fixed we 
introduce the representation 

(44) 
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then using (44) and (9), we may write 

K (go,a)::::::,x (g0,0j[ 1 - (D + (go)ma)lIV] . (45) 

Thus, using (3), we obtain from (43), after taking the limit, 

(4 _ dIg [~'(go) _ K'(go,O) + ~ D '+ (go)} + ~ _ 2 
o A (go) K (g0,0) v D + (go) v 

=0. (46) 

Ifwe integrate (46) over go, we obtain (assuming v to be inde­
pendent of go as is contemplated in the renormalization 
group theory of critical phenomena) 

[D (;;)](lIv)=eK(go,0)gl(2-l/V)/(4-d)J, (47) 
+\50 A (go) 0 

where e is a constant of integration which could depend, for 
example, on m, but not on go' For d = 1, (45)-(47) are not 
expected to hold as K (go,O) = 00. For d~2, as 
o < K (g0'0) < 00 for all go and A (go) = 0 for go = 0.1142··· as 
remarked above, (47) implies a singular amplitude for 
D + (go). For go---+<) the vanishing of D + is presumably related 
to the change of v to 1/2 in the Gaussian model (go = 0) limit. 
The implication that D + (go)---+<) as go- 00 seems difficult to 
reconcile with the nonzero values determined numerically 
for this limit. Also, asD + (go) should be real and positive, the 
change of sign ofthe right-hand side of(47) atgo-:::::::0.1142 ... is 
difficult to accomodate, unless, for example, v changes 
there. 

From the above analysis, using standard (nonrigorous) 
representations of some of the general features observed nu­
merically for the quantities involved, we conclude that the 
full renormalization group hypothesis does not seem easy to 
accomodate over the whole range go. We remind the reader 
that although the hyperscaling index relations are known to 
hold for the two dimensional Ising model, neither the critical 
value of the renormalized coupling constant, g., nor the 
critical indices as predicted by the renormalization group 
theory 1 have been computed to any reasonable degree of ac­
curacy to permit checking against the exact Ising model val­
ues. In three dimensions, where the renormalization group 
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theory results seem to be more accurately determined, 1 as we 
remarked above, there may be small but persistent differ­
ences with the Ising model results for g. and the critical 
indices. In one dimension, the Josephson relation, 
"dv = 2 - a" is known 14 to fail although other hyperscaling 
relations hold. 
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We investigate properties of the static noninteracting vortices determined by equations which 
generalize the first order Ginzburg-Landau equations. We prove that for each set of n points in 
the plane a unique solution exists to the first-order equations, with vortex number n. These n 
points mark the positions of the n vortices and are the only points at which the Higgs field I¢> I 
vanishes. Regularity properties of the solution are related to those of an arbitrary non-negative 
function in the theory. 

PACS numbers: 11.10.Np 

I. INTRODUCTION 

Vortex solutions of the abelian Higgs model have been 
the subject of detailed investigations in recent years. Proper­
ties of the static solutions, which are determined by the 
Ginzburg-Landau equations, depend on the value of a di­
mensionless parameter A. Of particular interest is the critical 
value A = 1, for then the static vortices do not interact and 
stable multi vortex solutions exist. Only for A = 1 do the 
masses of the Higgs and gauge mesons become equal, and 
intervortex forces cancel exactly. The mass of the multivor­
tex configuration depends linearly on the vortex number n, 
and solutions can be obtained by solving certain first-order 
equations, as Bogomol'nyi 1 has shown. These first-order 
equations are of particular interest because their structure is 
related to that of the self-dual equations. 2

,3 Following the 
analysis of Weinberg, 4 one expects the most general solution 
to depend on the 2n parameters which determine the vortex 
positions. Taubes5 has recently verified this by proving that 
such an n-vortex solution exists and is unique. 

The purpose of this paper is to show that the results of 
Taubes can be extended to apply to a much wider range of 
models. It has recently been shown° that the noninteracting 
phenomenon of vortices is not unique to the particular ¢> 4 

interaction of the Higgs model, but is a general property for 
Hamiltonians of the form 

(1.1) 

Here (¢> I,¢> 2) is a two-component real Higgs field, with 
Di¢> a = Ji¢> a - E"b¢> bA i, and we allow only two space di­
mensions. The expression (1.1) is the Hamiltonian for a static 
system in the gauge Ao = O. F and Vare continuous real 
functions of I¢> I, to ensure gauge invariance, and are non­
negative to ensure positive energy. This Hamiltonian allows 
vortex solutions provided Vhas a unique minimum at a non­
zero value of I¢> I, to produce symmetry breaking. In order to 
obtain the noninteracting property we define V, for each F, 
according to 

(1.2) 

where 

w(l¢> I) = S>F(S) ds. (1.3) 

Evidently V is non-negative and has one minimum, which 
we have chosen by a suitable rescaling to lie at I¢> I = 1. A 
special case is F _1, for which V = k( I¢> 12 - 1 )2, and we re­
gain the Higgs model with the special coupling constant 
A = 1 mentioned above. 

The energy is bounded below by 21Tnw(0) and this 
bound is attained if and only irn 

FI2 + w(l¢> I) = 0, 

D
i

¢> a _ tijE"h D
j

¢> h = O. 

The vortex number n is defined by 

n = _1_ { F
2l

dx, 
21T JI'I' 

(1.4) 

( 1.5) 

( 1.6) 

and we have assumed n > 0 but the case n < 0 is treated anal­
ogously. The clue to the non interacting property is that the 
energy depends linearly on n. Weinberg's analysis4 general­
izes to suggest that an n-vortex solution ofEqs. (1.4) and (1.5) 
depends on precisely 2n parameters, the vortex positions, 
which correspond to the zeros of the Higgs field I¢> I· 

Equations (1.4) and (1.5) are a simple generalization of 
those obtained by Bogomol'nyi, I and as before"·5 can be re­
duced to a single nonlinear equation. Writing 
¢> 1+ i¢> 2 = I¢> lei", we find from Eq. (1.5) 

Ai = - Jia - tlA(lnl¢> I), 

and from Eq. (1.4) 

.1 In I til I + w(ltill) = [J I,J2 ja. 

a is a gauge parameter, which we choose to be 

" (x' -al 

) a =2: arctan - i' , 
I_I XI -a l 

(1.7) 

( 1.8) 

( 1.9) 

where n is the vortex number, and the 2n parameters (a i) are 
the vortex positions. Equation (1. 8) becomes 

" .1lnl¢> 1+ w(l¢> I) = 21T 2: <s(x - a'), (1.10) 
;_0-1 

and is supplemented by the boundary conditions necessary 
for finite energy 

lim I til I = 1, 
(1.11 ) 

lim Inl¢> 1= nilnlx - ail, 
x a' ~() 
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for i = 1, ... ,n, where n i is the order of vanishing of I¢> I at a'. 
For F = 1 Taubes5 has shown that each set of n points in 

JR2 determines a unique classical solution to the first order 
Ginzburg-Landau equations. We obtain a similar result in 
general (Theorem I) provided F is restricted as follows: 

(i) F(s) is continuous and F(s);;;.O on [0,(0), 
(ii)F(I»O, 

(iii) (sE[O,I]:F(s) = 0) has Lebesgue measure zero. 
The condition (ii), used in Propositions 3.7 and 4.1 below, 
states simply that the mass m of the elementary excitations, 
namely the Higgs and gauge mesons which are of equal 
mass, is nonzero since m 2 = F( 1). TheconditionF( 1) > Oalso 
ensures that the minimum of Vat I¢> I = 1 is unique. The 
condition (iii) is used in Proposition 3.10 to guarantee 
uniqueness of the solution. 

We prove Theorem I by following the same strategy as 
in Ref. 5, defining on the appropriate Banach space a func­
tional ii which is minimized by Eq. (1.10). Several steps in 
Ref. 5 require modification to accommodate general func­
tions F (I ¢> I). In particular, we require the a priori result that 
all weak solutions of Eqs. (1.10) and (1.11) satisfy I¢> 1<1. 
Regularity properties of the solution then depend on those of 
F on [0, 1]; in particular, the fields ¢> a, A i will be C 00 provided 
F is C 00 on [0,1]. In this case the arguments of Ref. 5 show 
that we have obtained all finite energy solutions of Eqs. (1.4) 
and (1.5). 

A problem that remains concerns the equivalence of the 
first-order equations (1.4) and (1.5) and the second-order 
equations obtained by varying the Hamiltonian (1.1), assum­
ing finite energy. Taubes' has demonstrated the equivalence 
of the first- and second-order formulations for F -1, and 
although the proof generalizes for functions F with certain 
restrictions, such as 2F + I¢> IF ';;;.0 for alii¢> I, modifications 
appear to be necessary for a general proof. 

II. DEFINITIONS 

Following Taubes,5 let 

Uo = - ± In(l + A..), 
i~1 Ix-a'12 

(2.1 ) 

where A. is a suitably large real number to be chosen below 
(Remark 4.3). Define 

" A. 
go = 4 I I i 2 2' 

i~t{x-al +..1.) 
(2.2) 

so that on JR2\U;'~ I (at go and - Lluo agree. We note that 

uo, go. 1 - eU"EL 2(JR2). Define the unknown function v by 

U o + v = 21nl¢> I, (2.3) 

and if I ¢> I satisfies Eq. (1.10) with the boundary conditions 
( 1.11) then v is a solution to 

Llv + 2w(eiu" + vl12) - go = ° (2.4a) 

with 

lim v = 0. 
Ixl 'X 

(2.4b) 

Define also the functional 
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a(v) = r 1!IVv12 - v(2w(0) -go) + W(e iu ,,+VII2) 
)R' 
- W(e u,/2) jdx, (2.5) 

where 

iXdt i' W(x) = 4 - sF(s) ds, 
o t 0 

(2.6) 

and where we have used the notation Vv = (a IV,a2V). The 
variational equation of a(·) is formally Eq. (2.4a). However, 
we will find it useful to define another functional a which can 
be more easily extended to a nonlinear functional on a suit­
able Sobolev space. Define F by 

F(s) = F(s), O<s< 1 

= F(1), s> 1 (2.7) 

and then define iiJ, tv, and the functional a in the same way as 
above, by simply replacing Fby F. 

Now let us mention the various spaces used below. C k 

(HZ) denotes the space offunctions with derivatives of order k 
continuous on H2. C 00 (H2) is the intersection ofthe spaces C k 

(JR2) over all k, and CO' (H2) is the space of infinitely differen­
tiable functions with compact support. The Sobolev space 
wm,p(H2) is defined as the completion of C 0' (H2) in the norm 

{P' (P' 
Ilvll m .p = I II--vll, 

a, +a,<:.m ax l
a , ax2

a , p 

(2.8) 

with ai' a 2 non-negative integers. Here, theLP norm Ilvllp is 
defined by 

(2.9) 

Properties of the spaces wm.p(JR2) may be found in Adams. 7 

We will encounter the weak form ofEq. (2.4a). Define 

(grad a(v),h> = 1,1 Vv·Vh + goh - 2w(eiu" +v112)h jdx. 

(2.10) 

By a weak solution of Eq. (2.4) we mean a function 
VE W 1.2(JR2) nC (JR2) such that for all hE W 1.2 (JR2) (grad 
a(v),h> = O. WewiIl prove (Lemma 3.9) that a weak solution 
satisfies Uo + v<O, implying that the solution of Eq. (2.4) 
minimizes both functionals a and a. 

Let us now state the main result of this paper: 
Theorem I: For every point (al, ... ,a") in JR2 XJR2 

X···XH2 = H2" and Uo and go defined by Eqs. (2.1) and (2.2), 
respectively, there exists a unique function 
VEW

I
•
2(JR2)nC(JR2) which is a weak solution of (2.4a) and 

(2.4b). 
Regularity properties of v, which depend on F, are dis­

cussed in Sec. V. Since F is continuous we always have 
VEC 1 (IR?). 

III. PROPERTIES OF THE FUNCTIONAL a 

Proposition 3.1: a defined on CO' (H2) can be extended to 
a nonlinear functional with domain W 1.2(JR2). 

Proof We show that a(v) is finite for each VEW 1.2(H2). 
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Now 

a(v) = 15~IVV12 + vf + W{euo +vI12) 

- W(eUo/2 ) _ 2v f"''/'SF(S) dS}dX, 

wheref- - 2w(eU,,I2) + go· LetA = sup[F(s):SE[O,IJj then 

as If I";;go + A (1 - eUo),JEL 2(R2) and hence r vf dx is finite. 
JR' 

Since 
e"',.12 

W(e(U" + V1/2) - W(eu,,I2) - 2v Sa sF (s)ds 

S
e

l
"" ",/2 dtS' -

= e",./2 ~ e",/,sF(s)ds, 

I W(e(Uo+ v)l2) - W(eU,,I2) - 2v f"''/'SF(S)dsl 

..;;AeU"(eV - v-I). (3.1) 

The proof now continues as in Ref. 5, Proposition 4.1. • 
Proposition 3.2: The Gateaux derivative of a, a'(v;h ), ex­

ists for all V,hEWI.2(R2) and 

a'(v;h) = lim ~[a(v + th) - a(v)] 
,->0 t 

= 1,[VV'Vh +goh - 2w(e(U,,+vI12)h jdx. (3.2) 

Furthermore, for fixed v, a'(v;·) is a bounded linear function­
alon W I.2(R2). For fixed hEW I.2(R2), a'(·;h) is a nonlinear 
functional with domain W 1.2(R2). 

Proof Let v, hEW I.2(R2), then 

(lit ) [a(v + th) - a(v)] 

= i,lvv'Vh +goh _2w(eluo+vl12)h )dx 

+ ~ L,IVh 1

2
dx + 1,1- 2w(0)h 

1 -+ 2w(e(Uo + V)/2)h + _( W (eIU" + v + th liZ) 

t 

(3.3) 

The integrand in the third term on the right-hand side of(3.3) 
equals 

elU" I !' + rh 1/2 S + L",. ",/2 4 i L"". "'12
sF

(s) ds 

and this in modulus, using arguments like those which lead 
to (3.1), does not exceed 

(A It )eU" + vieth - th - 1). 

Equation (3.2) now follows from the arguments in Ref. 5, 
Proposition 4.2. We note also that for v, hEW I,Z(R2

), 

la'(v;h )1..;;{(L,lvvlzdX )112 + (1tdX }/2 

+ A (L,(e
V 

- 1)
2
dx }/2} Ilh Ile2' 

wheref and A are as in the proof of Proposition 3.1. • 
Remark3.3: For each VEW 1.2(RZ) we let grad a(v) denote 

the bounded linear operator a'(v;·) defined by (grad a(v),h ) 
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= a'(v;h ) for each hE W 1.2(R2). We will let a'(v;h ) denote the 
formal expression 

r [Vv.Vh + goh - 2w(elUo + V1/2)h )dx, 
JR' 

where 

w(t) = fSF(S)dS. 

(3.4) 

(3.5) 

For suitable VE W 1.2(R2), e.g., when v + uo,,;;O, a'(v;) will be a 
bounded linear functional on W 1.2(R2). In this case we let 
grad a(v) denote this bounded linear functional, in agreement 
with the definition of Eq. (2.10). 

Proposition 3.4: a is a convex functional on W 1.2(R2). 
Proof For u, VE W 1.2(R2) and using the fact that ho, 

(grad a(u) - grad a(v), u - v) 
= a'(u,u - v) - a'(v,u - v) 

= r [IVu - Vvl 2 + 2(u _ v)(w(euo+ vl12) 
JR2 
_ w(e(uo +ul12)))dx 

>0. (3.6) 

Equation (3.6) implies that the Gateaux derivative of a is 
monotone. The convexity of a follows from Ref. 8, Theorem 
5.1. • 

Proposition 3.5: Vo minimizes a on W I.2(R2) ifand only if 
grad a(vo) = O. 

Proof This follows from Propositions 3.2 and 3.4 and 
Ref. 8, Theorem 9.1. • 

Proposition 3.6: a is weakly lower semicontinuous on 
W I

•
2(R2

). 

Proof This follows from Proposition 3.2 and Ref. 8, 
Theorem 8.6. • 

Proposition 3. 7: Let VE W 1.2(R2)nC (R2); then grad 
a(v) = 0 if and only if grad a(v) = O. 

We state without proof the following: 
Lemma 3.8: Let fl be a bounded open set in R2 and 

VEW'·I(fl )nC(fl). Suppose that v(x) = 0 for all xEJfl, then 

L Vvdx = O. 

Lemma 3. 9: Let VEW 1.2(R2)nC (R2) and suppose that ei­
ther grad a(v) = 0 or grad a(v) = 0, then v + Uo";;O. 

Proof We give a proof assuming grad a(v) = O.Let 
1/JEC 0' (R2) have the properties ,pix) = 1 for Ix I..;; 1, ,pix) = 0 
for Ixl>2, O,,;;,p(x)..;;l, and IV,p(x)I..;;N, N>O, for allxER2. 
For R > 0, define ,pR by ,pR (x) = ,p(xl R ) for xER2. Let 
fl + = [xER2:UO(X) + v(x) > 0 j . fl + is an open set. Suppose 
that fl+ is nonempty. By continuity of v, akfffl+ for 
k = 1,2, ... ,n. Define 

{
(eIU« + v)/2 - l),pR on fl+, 

T/R = o on R2'\fl+. 
(3.7) 

Then T/ R E W ',2 (RZ), and has support in the closure of 
D 2R (0) = [ xERz:lxl <2R ). As grad a(v) = 0, 
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where fl / = fl +nDp (0). Putting 2u = Uo + v we obtain 

{ {- 2w(e")(eU 
- 1)¢'R + 2(eU 

- l)Vu,V¢'R 
Jfl /10( 

Now 

- (e" - l)Vuo,V¢'R 
+ 2lVul 2eu¢'R - Vu·VuOe"¢'R 
+ gore" - 1 )¢'R }dx = 0. 

(e" - 1) !:O¢'R E W ('((fl2~ )nC (iI 2~) 
, 

(3.9) 

and equals zero on afl2~ for i = 1,2; hence by Lemma 3.8, 

( V·((e"-I)Vuo¢'R)dx=O. (3.10) 
J!12~ 

This equation implies that 

- ( (eU - I)Vuo·VI/JRdx 
)f) /R 

= ( [e UVu·Vuo -(eU-l)goII/JRdx (3.11) 
Jfl2~ 

since..1uo = - go on fl +. Substituting (3.11) into (3.9) yields 

1, .. [IVul 2eu 
- w(eU)(e

U 

- 1)II/JR dx 

= - 1, .. (eU 
- I)Vu·VI/JR dx. (3.12) 

Since F is continuous and F (1) > ° there exists a constant 
d> ° such that - w(eU)(eU - 1);;.d min(e U 

- 1,(eU - 1 f), so 
by (3.12) and the fact that I/JR 1 on fl ;- , 

( [IVul 2eu + d min(eU 
- 1,(eU 

- 1)2)) dx In ~ 
,;;;1,'" (e U 

- 1)IVuIIVwR I dx 

,;;;N ( IVulle U
- 11 dx. 

R In ,'R 
(3.l3) 

As eU - 1 = eu,,!2(e,,/2 - 1) + (eu,,!2 - 1), leU - 11,;;; Ie" - 11 
+ leU" - llEL 2(lR"), and as IVuolEL 2(JR2) we also have 
IVulEL 2(JR2). We conclude from Holder's inequality that 

1,:.,(eU 
- 1)IVU 1dx,;;;(L(e U 

- Ij"dx )'/2 

x(L.IVU I2dX )'/2 < 00. 

Now letting R~ + 00 in (3.13) we obtain 

( min [eU 
- 1,(eU 

- 1 f 1 dx = 0. In 
Since u is continuous on fl + we conclude that fl + has zero 
measure, a contradiction. • 

Proof of Proposition 3. 7: The proposition follows from 
Lemma 3.9 and the fact that 

w(erU" + "1/2) = w(elu" f ")12) 

whenever Uo + v,;;;O. 

Proposition 3.lO: There is a unique function 
VEW 1.2(JR2)nC(JR2) such that 

a(v) = inf[a(u):uEWI.2(JR2)). 
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• 
(3.14) 

Proof Suppose to the contrary that there are two func­
tions v]' VzE W ].2(Hz)nC (HZ) which satisfy (3.14). By Proposi­
tion 3.5 it follows that grad a(vd = grad a(v2 ) = 0, and so by 
Lemma 3.9 that v] + uo';;;O and V2 + uo';;;O, and that 
a'(v],v] - v2) - a'(v2,v] - v2) = 0. We shall contradict this 
last statement. Since v] =/= Vz there exists a neighborhood N 
which does not intersect [ak:k = 1,2, ... ,n 1 on which v] =/=v2 • 

For xEN 

2(vI(x) - v
2
(x)) [w(e1u"IXI + "'IXII/2) 

_ w(eluolXI + ",{XII /2)] 

= 2(Vl(X) - v2(x)) 
1",,1<1, ",'<11/2 

X f .. ", ,., .. '1' sF (s)ds > 0, (3.15) 

since the measure of [sE[O,1]:F(s) = 01 is zero. By (3.15) it 
follows that in fact a'(v],v( - v2 ) - a'(v2,v( - vz) > 0. • 

IV. EXISTENCE AND UNIQUENESS OF WEAK 
SOLUTIONS 

It follows from Propositions 3.5 and 3.7 that the exis­
tence and uniqueness of a weak solution to Eqs. (2.4a) and 
(2.4b) follows from the existence and uniqueness of a func­
tionvEW 1.2(JR2)nC (JR2)suchthata(v) = inr[ a(u):uEW 1.2(JR2) I. 
The uniqueness follows from Proposition 3.10. The rest of 
this section deals with existence. 

Proposition 4.1: There exist constants a > 0, band k > 0, 
such that for all VEW 1

•
2 (JR 2

), 

_'I )"- allvll~.2 a V;V,p 
(1 + k Ilvlk2) 

- b. (4.1) 

In order to prove this proposition we prove some properties 
about uo,go, and w. 

Lemma 4.2: There exists a positive constant c such that 
for all x,;;;O, 

(4.2) 

Proof This follows from the continuity of F and the fact 
that F(I) > 0. • 

Remark 4.3: From now on we assume that the constant 
A in the definition of uo and go satisfies A> 4n/c, where c is 
the constant in (4.2). 

Lemma 4.4: Let Uo and go be defined as in Eqs. (2.1) and 
(2.2), respectively. Let M> 0, then for A> 4n/ M 
(i) there exists a constant C 1 > ° such that for all xEJR 2, 

M - go(x);;.c l ; 

(ii) for all xER2 

- go(x) + M (1 - eU"rxl) > 0. 

(4.3) 

(4.4) 

Proof This lemma follows from a minor modification of 
Ref. 5, Lemma 5.2. • 

Proof of Proposition 4.1: For VE W 1.2(JR2), 

M. A. Lohe and J. van der Hoek 151 



                                                                                                                                    

and fl~ = [XEJR2:V(X» - u()(x)j. On ill' using Lemma 4.2, 

gov - 2w(eIU" + V1/2)V 

= Ivl( - go + 2w(eIU" + "1/2) 

> Ivl( - go + 2c( I - e1u
" + "112)) 

> Ivl( - go + c(l - eU
" +1')) 

= Ivl( -go+c(l-eU
,,)) 

+clvleU"(I-e- i

") 

> Ivl( - go + c(1 - eU
,,)) 

clvI 2e"" +---, 
1+ Ivl 

where we have used the inequality 

I-e-x>x/(I +x) 

for x>O. By the remark following Lemma 4.2 and by Lemma 
4.4 it follows that 

C Ivl2 
g V - 2w(eIU" + "1/2)V:;;._I __ . 

o ?1+lvl 

Let A = sUPs>oF(s) < 00. Then on il2, 

- 2w(eIU" + ''1/
2

) = - 21'". , "I,sF (s)ds 

> -2AL ... ,,,sdS 

= A (e u"+,, - I»A (uo + v). 

Hence 

v( go - 2w(elUo + VI/2))>V( go + Auo) + Av2• 

Onil3 

- 2welu" + 1'112) = 2F (I) f'"" .. ,/2 S ds 

=F(I)(eUO+U_I) 

>F(I)(uo + v), 

whence 

(4.5) 

(4.6) 

(4.7) 

The rest of the proof follows from (4.5), (4.6), (4.7), and minor 
modifications of Ref. 5, Proposition 5.1.. 

Proposition 4. 5: There exists VE W 1.2(H2)nC (H2) such that 

Before proving this proposition we establish the following. 
Lemma 4.6: For each VE W 1.2(H2), w(elUo + vI/2)EL 2(H2). 

Proof Let ill = [XEJR2
:UO(x) + v(x).;;;;0l, il2 = JR2-il l · 

On ill' 

O.;;;;w(elu
" + 1'112) = L .. , "I' sF(s)ds 

.;;;;(A /2)(1 _ eUo +V), 

where A is as in the proof of Proposition 4.1. On il2, 

152 

(u.., + v)2 

w(eIUo + V
)/2) -F(l) [ sds 

_ F(l)(eu,,+v _ I). 
2 
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(4.8) 

(4.9) 

Combining (4.8) and (4.9) 

Iw(eIU
" + "1/2)1 .;;;;const{eU" Ie" - 11+ leuo 

- II}EL 2(H2
). 

• 
Lemma 4.7: Let G (x) be a real Gateaux differentiable 

functional defined on a real reflexive Banach space E, which 
is weakly lower semi continuous and satisfies the condition 

(grad G (x), x) > 0 (4.10) 

for any vector xEE, Ilxll = R > 0. Then there exists an interi­
or pointxo of the ball IxEE:llx/l.;;;;R } at which G (x) has a local 
minimum so that grad G (xo) = 0. 

Proof See Ref. 8, Theorem 9.8. 
Proof of Proposition 4.4: By Propositions 3.2, 3.6, and 

4.1 the assumptions of Lemma 4.7 are satisfied for R suffi­
ciently large. As W 1.2(JR2) is a reflexive Banach space, there 
exists VE W 1.2(JR2) with grad a(v) = 0, and so v is a distribu­
tional solution of 

Llv = - 2w(eIU
" + "1/2) + go' 

By Lemma 4.6, LlvEL 2(H2) and hence vE W 2
•
2(H2

). By the So­
bolev imbedding theorem, see Ref. 7, p. 97, we conclude that 
VEC (H2). The proposition now follows from Proposition 
3.5. • 

V. PROPERTIES OF THE SOLUTION 

We remark that since Uo depends on A then the unique 
minimizer v of a(.) on WI .2(JR2) will also depend on the choice 
of A. By the same argument as in Ref. 5, U o + v can be shown 
to be independent of the choice of A, for A sufficiently large. 

We noted in Proposition 4.4 and 4.8 that v is continuous 
on JR 2

• We can show more. We show also that Lemma 3.9 can 
be sharpened. 

Proposition 5.1: 
(i) If the first k derivatives of F are bounded on the interval 
[0,1], then VEC k + 1(JR2). 
(ii) If F is Coo on [0, I], then VEC 00(JR2). 

Proof Clearly (i) implies (ii). v is a weak solution of 

Llv= _2w(eIU ,,+vi/2
) + go, (5.1) 

and Uo + v.;;;;Oon JR2. Let v, av/ax,; then on differentiating 
(5.1) wi th respect to x" 

Llv, = eU" + "F(eU" + Vi/2)(v, + auo) + ago, 
ax, ax, 

which implies that Llv,EL 2(JR2) and hence that V,EW2.2(JR2) 
for i = 1,2, ... ,n whence V,EC (JR2

) by the Sobolev imbedding 
theorem (see Ref. 7, p. 97) or VEC I(JR2). Repeating this argu­
ment gives (i). Since Uo + v.;;;;O, the regularity properties of v 
depend only on those of F on [0,1]. 

Lemma 5.2: Let F have bounded first derivatives on the 
interval [0,1]; then the weak solution of(5.1) is C 2(H2) and 

Uo + V<O. 
Proof By the continuity of F there exists ° < r < I such 

that F(s»r> ° for r.;;;;s.;;;; 1. Let 
il = [XEJR2

:Uo(x) + v(x) > 21n r}. Then a k ~ for 
k = 1,2, ... ,n. It will be sufficient to show that Uo + v < ° on 
il. We have w = w(¢'(x)), where ¢' = e1u" + 1'1/2 as above. Then 
from the strong equation (5.1), Proposition 5.1(i), and using 
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.::1uo = -go, 

[.::1 - b·V - ¢zF(¢)]w = 0, 

where 

b=(~+ F'(¢))V¢. 
¢ F(¢) 

(5.2) 

Clearly b is bounded and ¢2F(¢) > 0 on n. By Lemma 3.9, 
w>O on n and so by the maximum principle, see Ref. 9, 
Theorem 3.5, w > 0 on n and hence Uo + v < 0 on n. • 

Proposition 5.3: IfF is real analytic on an open interval 
containing [0,1) then v is real analytic on ]R2. 

Proof Since eUo is real analytic on ]Rz and Uo + v < 0 on 
RZ by Lemma 5.2, the proposition follows from the theory in 
Ref. to, Sec. 5.8. • 

Remark 5.4: We have shown that if Fis COO then the 
solution v is Coo and it follows that the fields Ai and ¢ a are 
C "". In this case we may quote Proposition At.t ofTaubes,5 
the proof of which does not rely on the particular form of the 
function F, and which shows that the zeros of [¢ [ are dis­
crete. A proof is also to be found in Ref. 11, p. 76. This 
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implies that when Fis C 00 we have found all solutions to the 
first-order equations (1.4) and (1.5). Thus, 

Proposition 5.5: Let Ai and ¢ a be, respectively, Coo 
gauge and Higgs fields on]Rz which satisfy Eqs. (1.4) and 
(1.5). Then IXE]R2:[¢ [(x) = OJ is discrete. 

'E. B. Bogomol'nyi, Sov. J. Nucl. Phys. 24, 449 (1976). 
2M. A. Lohe, Phys. Lett. 70 B, 325 (1977). 
'c. H. Taubes, Commun. Math. Phys. 75, 207 (1980). 
·E. Weinberg, Phys. Rev. D 19, 3008 (1979). 
5C. H. Taubes, Commun. Math. Phys. 72, 277 (1980). 
6M. A. Lohe, Phys. Rev. D 23,2335 (1981). 
7R. Adams, Sobolev Spaces (Academic, New York, 1975). 
8M. M. Vainberg, Variational method and method of monotone operators in 
the theory ofnonlinearequations(Wiley, New York, 1973). 

9D. Gilbarg and N. Trudinger, Elliptic partial differential equations of sec­
ond order (Springer, New York, 1977). 

IDC. Morrey, Multiple integrals in the calculus of variations (Springer, New 
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"A. Jaffe and C. Taubes, Vortices and monopoles (Birkhauser, Boston, 
1980). 
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For a restricted class ofSU(2) gauge-field structures we show that only integral topological 
charges can occur, without making any assumptions about the asymptotic behavior of the fields 

PACS numbers: l1.lO.Np 

1. INTRODUCTION 

It is generally believed that in SU(2) gauge theories an 
arbitrary finite-action gauge-field structure must have inte­
gral topological charge. However; the usual "proof' of this 1 

depends on properties of S 4, the one-point compactification 
of R 4. It assumes that all gauge-field structures can be ex­
tended from R 4 to S4. This Compactification Assumption 
has been attacked by Crewther,2 who has argued that nonin­
tegral topological charges are important. 

RecentlyJ I showed that a proposed counterexample to 
compactification,4 with topological charge~, was not valid. 
Reference 3 also quoted some results to the effect that all 
solutions in a wide class of gauge-field structures were in­
stan tons, hence compactifiable. 

Here I will extend and prove those results. They rein­
force our belief in the integral nature of topological charge, 
and perhaps provide the first stages of a full proof. 

In Sec. 2 we define the class Cr., of gauge-field struc­
tures to be considered. It consists of self-dual fields A;, de­
fined by a familiar ansatz 

A;,~lnpi 

on patches Pi' All thepi are taken to be functions of just two 
variables (r and t). This simplification allows us to prove 
some important crossing properties (Sec. 3). We use these in 
Sec. 4 to show that any Pi (Pi ) can be extended to allR 4 apart 
from isolated removable singularities (instantons). In Sec. 5 
we find the complete solution for the class Cr". Section 6 
contains some comments. 

2. DEFINITION OF Cr,t 

We consider the class ( Cr., ) of self-dual gauge-field 
structures (or connections) defined by 

A;, =O'ln,~lnpi(r,t) 
ax" 

on regions Pi' where UiPi = R 4 and 

J 2 2 2 xo=t, r= x,+x2 +x3 , 

0",0' 
= {O't) = (1/ 4i) [ O'i ,O'j ] 

aOi = ~ai. 

On PinPj =l=tP the gauge fields must be related by a gauge 
transformation 

(1 ) 

(2) 

aj Present address: DAMTP, Univ. of Liverpool, P,O, Box 147, Liverpool, 
United Kingdom. 

Ai = nA j n -I + ia n.n -I 
11 Ii Ji , (3) 

where 

n = exp {ia(r,t) ~;} (4) 

for some function a(r,t ). 
Note that if Pi = Rei¢> then 

ai' In Pi = ai' In R + ia" tPERe (5) 

implies that tP is a constant whose value does not affect A;,. 
We can therefore take it to be zero without loss of generality, 
making Pi real and positive. Observe that P, cannot change 
sign since that would imply a point with Pi = 0 in P" at 
which A;, would be singular, i.e., undefined. 

3. CROSSING PROPERTIES 

We prove the following. 
Theorem 1: (i) For an arbitrary function h (r + it ) which 

is analytic in PinPj , if 

rpi = Re(ch ), (6) 

rpj = Re(c*/h), 

(CEq then Eqs. (3) and (4) are satisfied with 

a(r,t ) = 1T + 2 arg(ch ). 

(7) 

(8) 

(ii) Conversely, any nontrivial solution of Eqs. (1 )-(4) can be 
expressed as in Eqs. (6)-(8) for some CEC and some analytic 
(in P;nPj ) function h (r + it). 

Proof A little algebra shows that Eqs. (1 )-(4) are equiv­
alent to 

aa a 
- = -[In(rp;lrpj)], at ar 

(9) 

aa (a) a - = tan - -[In(rp;.rpj)], at 2 at (10) 

aa a 
- = - -[In(rp;lrpj)]' ar at 

(11 ) 

aa (a) a - = tan - .-[In(rpi·rpj)]. ar 2 ar 
( 12) 

It is easily checked that Eqs. (6)-(8) satisfy this set of equa­
tions, and also the self-duality equations 

1 (a1 a1 
) - -, +-, (rp.] =0 

rph ar at-
( 13) 

(k = i,l). This proves part (i) of the theorem. 
To prove part (ii) we need to find the most general solu­

tion of Eqs. (9)-( 13). The most general solution of Eq. (13) 
with P k real is 
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rpk = Re qdr + it) (k = i,j), (14) 

where q k is arbitrary except that it must be once-differentia­
ble (hence analytic) to define A ~. 

Equations (9)-( 12) lead to two relations involvingjustp, 
andpi (not a). Using Eq. (13) these reduce to just one: 

( a2 a2) (rp, ) 
-0 + -0 In - =0. ar at- rpi 

(15) 

The general solution ofEq. (15) withpk real and positive 
(k = i,j) is 

rp,Irpj = Ih (r + it W 
with h an arbitrary analytic function. Thus we have 

Re q,(r + it) = Re qj(r + it)-lh (r + it W. (16) 

Next we will solve Eq. (16). If h is a constant then 

A;, =A{" 
i.e., the solution is trivial. Otherwise we can substitute Eq. 
(16) into Eq. (13) (twice) to get 

Re{q + q"~} = 0 (17) } } h" 

Re{q,-q;:,} =0. (18) 

The general analytic solution of 

Re g(r + it ) = 0 

in a nonempty open region is 

g(r + it) = imaginary constant. 

Then Eqs. (17) and (18) imply 

qj = d /h + ia, 

q, = ch + ib, 

(19a) 

(19b) 

where a, b (ERe) and c, d (Ee) are constants. Equation (16) 
implies 

c =d* 

so that we have derived Eqs. (6) and (7). All we need to do 
now is to show that Eq. (8) follows. Equations (9) and (10) 
imply 

a a fa tan- = -[In(rp,/rpj] -[In(rp,.rp)), 
2 ar at 

which after a little manipulation gives 

tan(~) = - Re(ch ) = tan(!!.... + arg(ch )) 
2 Im(ch) 2 

implying 

a = 1T + 2 arg(ch ), 

which is Eq. (8). This proves the theorem. 

4. EXTENSION OF Pi 

(20) 

(21) 

• 
Theorem 2: For any solution in Cr." any ofthep,(r,t)'s 

can be extended to all R 4 apart from isolated points on the t 
axis. In the neighborhood of an excluded point-at 
(r,t) = (0,{3 )-we have 

(a>O). (22) 
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Proof Consider any two patches Pi and Pj with nonzero 
intersection. On PjUPj we have two possibilities: 

(i)A~ =A~. 
In this case 

Pi=pjXC 

on P,uPj with c a positive constant. Then p, and Pi can be 
extended to all PinPj by taking 

p, Pj Xc 

everywhere. 

(ii)A ~ #A~. 

Here part (ii) of Theorem 1 applies. On Pin ~ there is an 
analytic function h (r + it ) such that 

rp, = Re(ch), (23) 

rpj = Re(c* / h ). 

Now c* /h is analytic throughout ~ [cf. Eq. (14)]. It can 
therefore be used to define h (hencepi) throughout Pi' except 
for poles where 

c*/h = O. 

The zeroes of a non constant analytic function are necessarily 
isolated, so the poles ofp, in Pi must also be isolated (in the 
complex r + it plane). 

Suppose thatp, has an Nth order pole at 
r + it = a + i{3, and 

h 
a + ib 

c -------~-----
(r + it - a - i{3)N 

Consider ,.1,<1 and take 

r - a =,.1, cos 0, 

t - {3 = A sin O. 

(24) 

(25a) 

(25b) 

Now 0 can take all values in - 1T~1T if a # 0, and all values 
in - 1T/2~ + 1T/2 if a = O. Also 

arg(ch ) = arg(a + ib ) - NO 

must only take values in - 1T/2~ + 1T/2, to keep p, posi­
tive. This implies 

N= ± 1, a =0, arg(a + ib ) = 0, 

a>O, b = O. 

In the neighborhood of the singularity, therefore, 

ch- a 
r + itt - {3)' 

which implies 

a 
p,- r+(t-{3f 

as asserted. Note that points on the t axis are unique on the 
(r,t) half-plane, in corresponding to points on R 4. 

Putting (i) and (ii) together we see that Pi (Pj) can be 
extended to all PiuPj , and hence to all R 4, apart from point 
singularities of the type given by Eq. (22). This proves the 
theorem. • 

A simple corollary of Theorem 2 is that at most two 
patches suffice to define any element o/Cr•t • One patch will be 
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defined except at isolated points in terms of a function 
h (r + it ); the other will be defined in terms of h - 1 and will 
include all those points. 

5. A GENERAL SOLUTION FOR Gr. t 

Theorem 3: In the class Cr.! only integral topological 
charge is possible. 

Proof For any element of Cr.! Theorem 2 allows us to 
define a gauge field A:, with only isolated singularities. Vh­
lenbeck5 has shownothat any such field can be extended from 
R 4 to S4. This ensures integral topological charges. I • 

Theorem 3 can also be proven as a simple corollary to 
Theorem 4: For any element of Cr.!, any p;(r,t ) in that 

element takes the form 

N a. 
p;(r,t) = a + L ? ('- (3 f 

,~1 + t ; 
(26) 

with a;;,>O, G; > 0, (3; =I=(3j(i=l=j). 

Proof Consider p;(r,t) whereP; has been enlarged to all 
R 4 apart from singularities on the t axis. Then 

Pi = ~ Req(r + it), (27) 
r 

where q(r + it) is analytic in the r> ° half-plane. Also 

Req>O forr>O, (28) 

Re q = 0 for r = 0, 

except at singularities. We can use the reflection principle to 
extend q to a meromorphic function on the entire r + it com­
plex plane, using 

q(r + it )_ - [q( - r + it)]*. 

Note that q is analytic for r < 0, and 

Re q < 0 for r < O. 

(29) 

(30) 

We have already found the possible singularities q can have 
(Theorem 2). The most general analytic function satisfying 
Eqs. (30) and (32) is 

q = aIr + it) + ib (a,bE Re,a > 0). (3 I) 

To see this take 

if(r + iz) = q(r + iz) - q(O), (32) 

which also obeys Eqs. (28) and (30) since q(O) is pure imagi­
nary. Consider the change in argumen t of q around a circle of 
radius R centered at the origin. This is, 21T X number of ze­
roes ofq in the circle. The latter number is at least one, and 
must be exactly one 't/ R to satisfy Eqs. (28) and (30). Defining 

g(z)-q/z (33) 

(z = r + it) we see thatg is analytic in C, and has no zeroes. If 
g(z) were a polynomial this would imply that g was a positive 
real constant, proving Eq. (31). To complete the proof we 
must show that g cannot be transcendental. 6 If it were, then 
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the above arguments applied to 

q-q + az (a> 0) 

would show that g cannot equal - a for all a real and posi­
tive. This contradicts Weierstrass' theorem, so g cannot be 
transcenden tal. 

Combining Eq. (31) with Theorem 2 we find the most 
general solution 

N a 
q = aIr + iz) + i(3 + I . ' . 

; - I r + I(t - (3, ) 

This proves the theorem. Note that 

= N(a=l=O) } 
v(PI=N_l(a=O) , 

(34) 

(35) 

proving Theorem 3. For an arbitrary choice of the taxis, Eq. 
(34) recovers the full set of solutions of Jackiw et al. 7 

6. COMMENT 

Without assuming compactification, we have proved 
that in the class of gauge-field structures Cr.! the topological 
charge must be integral. A general proof would doubtless 
require more sophisticated techniques. Nevertheless, our 
central concept could be the basis of such a proof. It is the use 
of analytic techniques to show that only isolated singulari­
ties can occur. 

In conclusion, we note that the compactifiable nature of 
the solutions in Cr.! follows directly from the finiteness of the 
action. This implies that there are only finitely many singu­
larities. On any patch P; these must lie in a bounded interval 
( < R ) beyond which everything is smooth, and can be ex­
tended to the point at infinity. With infinite action we could 
have an infinite string of singularities, and such a solution 
would not be compactifiable. 
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Typical and atypical representations ofSU(m/n) are worked out, in an explicit and pedestrian 
way. Examples are given. 
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I. INTRODUCTION 

Lie superalgebras (Refs. 1,2) are progressively becom­
ing very used in physics: as algebras for super unification 
(Ref. 3), in nuclear physics (Ref. 4) and in supergravity (Ref. 
5). 

The irreducible representations of Lie superalgebras 
have already been studied to a certain extent (Refs. 6 and 7), 
but we feel that there is a need for some clarification in this 
problem. We hope to do it in this paper where we study the 
typical and atypical representations of SU(m/n). 

Atypical representations are the ones which have been 
least studied, though they are obviously of importance: all 
the adjoint representations ofSU(m/n) for mn > 2 are atypi­
cal; and they could be of importance also in physics. 

In this work we rely heavily on the techniques of Ref. 6, 
perhaps the most powerful one. We have a pedestrian ap­
proach which we feel hopefully is pedagogical, simple, and 
operational. 

In Sec. 2 we present the properties ofSU(m/n) directly 
relevant to us. In Sec. 3 we explain simply how a typical 
representation is built. In Sec. 4 we study the atypical case; 
and in Sec. 5 we give several examples of SUI 112), SU(2!2), 
SUI 118), and SU(2/3). In this paper we state only the results 
and properties of unitary superalgebra relevant for us. For 
basic definitions and additional information we refer the 
reader to Refs. 1, 2, and 6. 

2. SU(m/n)==.A(m - 11n - 1) 

The bosonic or even part Go of the Lie superalgebra 
SU(mln) is Go = SU(m) ® SU(n) ® U(I). [When m = n, the 
even part of A (m - 11m - 1) is Go = SU(m) ® SU(n), but in 
factA (m - 11m - 1)¥SU(mlm), cf. ultra.] 

The fermionic or odd part ofSU(m/n) is made of two 
parts G _I and G1 corresponding, respectively, to the irredu­
cible representations (m, n) and (m, n) of SU(m) ® SU(n). 

The algebra SU(m/n) is then of dimension 
(m 2 - 1) + (n2 - 1) + 1 + 2mn = (m + n)2 - 1, and its 
rank is m + n - 1. SU(mln) = G _I ® Go ® G 1 satisfies 

[Go, Go] = Go, 

[Go, G±IH;;;G±I' 

{G1, G_J~Go, 

{G1, G1} = {G_ 1, G_ 1} = 0, 

and can be decomposed into: 

a'Supported in part by the Swiss National Science Foundation. 

(a) A Cartan subalgebra ! hi J, whose dimension is 
m + n - 1. (In the case m = n, there is a linear combination 
of these 2m - 1 elements which gives an element I in the 
center of the algebra, so SU(m/n) is not simple and 
A (m - 11m - 1) is defined as the coset of the original super­
algebra by this ideal: 

A (m - 11m - 1)= S(m\m) , kEf" 
kI 

We take the basis in which the simple roots are eigenvectors 
of the hi as we will see later. 

(b) The other generators are divided into positive/nega­
tive, even/odd roots: 

-the positive/negative even roots a i±, c/ correspond 
to the positive/negative roots ofSU(m), SU(n), respectively. 

-the positive/negative odd roots are called b j ± and 
belong, respectively, to (m/n) and (m/n) ofSU(m) ® SU(n). 
One can define a system of simple roots in such a way that 
there is one simple positive odd root f3 + , with m - 1 and 
n - 1 simple positive even roots ofSU(m) and SU(n), at, 
... ,a';; _ 1 and r,;; + 1 , .. ·,r';; + n _ 1 , respectively. (In the same 
way one can define simple negative roots.) 

It is worth emphasizing that in terms of representation 
ofSU(m) ® SU(n), f3 - corresponds to the highest weight of 
(m, n) and f3 + to minus that vector in the root space. [,8 + 

belongs to (m, n) but is not the highest weight.] 
In terms of these simple roots, the algebra looks like 

(with the convention f3 + = a';;; r,;; + j = a';; + j) 

[a i+, aj-] = oijh j , iJ = I .. ·m - 1; m + 1 .. ·m + n - I, 

{a';;, a,;;-} = hm 

[ + -]-[ + -]-0 am' a; - a; , am - , i=j=m, 

[hj, a/] = ± aija/ ViJ, 

where the aij are the elements of the Cartan matrix associat­
ed to the algebra 

m-I ------------I 0 

2 

-I 

-I 2 

0 -\ 

0 

0 

-I 

0 
-\ 

0 

0 

2 -\ 

~ n-\ -\ . . . 
2 
~ 

n-\ 
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A contains the same information as the following Dynkin 
diagram: (a mm = 0 implies am,m + t = + 1; am,m _ t = - 1) 

am + n -- 1 

~-®-~ 

m-l n-l. 

The a; characterize the highest weight A of a given represen­
tation, am corresponds to the odd simple root, and to the 
zero in the diagonal of the Cartan matrix, 

The Cartan subalgebra is defined in such a way to mea­
sure the projections of A along the simple positive roots a; t 
giving the a;, (a;EZ +u[ OJ, i=lm, amEf...) 

Nonsimple roots are obtained by commutations be­
tween simple roots as in customary Lie algebra, These com­
mutations are made more perceptible with the notation: 

f3 ± = b;;; ±, aj~ m = a/ ' a/; m = r/ ' 
In the case of the odd negative roots it is worth while to be 
precise: 

[b k - -] 8 b 1k - t )-
I 'U i = i,k-l I , 

[b k - - ] 8 b k-
I ,rj = - j,/ + t 1+ t ' 

(2,1) 

(2,2) 

This leads to a natural ordering of the odd roots b j ± accord­
ing to the values of the indices i (in decreasing order) and} (in 
increasing order), 

The following relations are also easy to verify and 
useful: 

if k> i + 1 or 

k<,i - 1 or 

if k = i + 1 or 

if k = i or 

/<i, 

I>i + 1, 

1 = i-I, 
1 = i, 

(2,3) 

if k = 1= m or k<m, I>m, 

if k=m, 1 =1m, 

if 1= m, k =1m, 
(2,4) 

(2,5) 

[b7-, r/] = -8jlb7~1' 
m-I , 

{b7+, b7-}=hm + L h; - L }j' (2,6) 
;~k j~m+t 

{b7+, br-}= [a'k++t···[a k-+:_ t , a k-+:],··], k<k', 

= [ak--:+t .. ·[ak-- t , a k-]",], k>k', 
(2.7) 

rl+ ] ... ], 1>1', 

rl-].··]' 1<1',(2.8) 

(2.9) 

3. TYPICAL REPRESENTATIONS 

In this section we describe the principle of construction 
of irreducible representations ofSU(mln). (This section is 
completely inspired from Kac, Ref. 6.) 

(1) One chooses a highest weight A corresponding to a 
set of a, appearing on the Dynkin diagram. A belong to the 
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multiplet of SU(m) ® SU(n) characterized by the a;i'm; am 
will characterize its "typicality." In this section we will sup­
pose that am is a complex number or any number different 
from the one appearing in the next section. The representa­
tion will be called typical, that means that all the possible 
multiplets ofSU(m) ® SU(n) which could appear will appear. 

(2) By definition of the highest weight, 

a,+ A = r/ A = f3 + A = b j t A = O. 

The representation is exhibited by repeated applications of 
the negatives roots: 

-the negative even roots a;- and rj make us migrate 
inside multiplets ofSU(m) ® SU(n) 

-the odd roots b j - [which are in a (m, n) ofSU(m) 
® SU(n)] make us change the multiplet. 

Since [ b j ,b 7 - 1 = 0 'If i,}, k, I, one can apply on A at 
most an anti symmetric combination of m X n odd roots. (We 
will say that the representation has a "ground floor" and 
m X n floors.) 

The multiplicity of a typical representation is very easy 
to compute; it is the multiplicity of A times 2mn [the multi­
plicity associated with the antisymmetric combinations of 
b j corresponds exactly to the binomial coefficients of 
(1 + l)mn]. In other words, the multiplicity can be written: 

dim V(A ) = 2mn II 
1 <i.;.j<m - I 

a j + ... + aj +} - i + 1 

}-i+l 
a j .. • + aj t j ,t t 

X II } - i + 1 m-+-I i· I mIn 

A few remarks are in order which will be useful in the next 
section: 

-The zeroth floor corresponds to the SU(m) ® SU(n) 
irreducible representation of which A is the highest weight. 
The first floor corresponds to the product A ® (m, n); the 
second floor to A ® [(m, n) ® (m, n)]A; and so on .. ·. So each 
floor, from the first, corresponds in general to a reducible 
representation ofSU(m) ® SU(n), which one has to disentan­
gle; there are then "highest-highest weights" at each floor 
and sometimes also "lower-highest weights" for the other 
representations. 

-In terms of Young diagrams, the antisymmetrized 
product of k times (m, n) is the direct sum of all possible pairs 
of Young diagrams made of k boxes wi th a maximum of m 
rows and n columns with respect to SU(n), and the contra­
gradient of it is transposed for SU(m). 

Proposition 3.1: The highest weight of the reducible re­
presentations at each floor (referred to as highest weight) is 
obtained by applying the negative odd roots b; - in their 
"natural order." 

Proof A "naturally ordered" product of II b j is by 
;J 

definition such that it commutes with any positive even 
roots. That means that in the product, at the right of any b j 
there is either b j + t or b j + t or both. Then it is obvious that 

if A is a highest weight. 
To extract the SU(m) ® SU(n) representations hidden 
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behind the highest-highest weight, one proceeds in the cus­
tomary way: the lower-highest weights correspond to suit­
able linear combinations of the different operators leading to 
that weight; the orthogonal combinations corresponding to 
members of bigger representations. 

If Va and VI denote the "bosonic," respectively, "fer­
mionic" part of the representation, then dim Va = dim VI 
and either Va or VI is made of the elements of the even or odd 
floors by the following property of the binomial coefficients: 

Given the biggest reduced representation and any little 
one, let A, be the number of times the even root a,- has to be 
applied anywhere in the product of odd roots in order to pass 
from the highest weight to the members of the linear combi­
nation of the lower-highest weight. 

Let ao be the weight vector of the biggest representation 
and a the one of the little; then A = (au )-I(ao - a), where (au) 
is the Cartan matrix ofSU(m) ® SU(n). For SU(n), 

2 - 1 

-1 2 

- 1 

-1 
2 

-1 

-1 

4. ATYPICAL REPRESENTATIONS 

2 

-1 

-1 

2 

A pathology associated with irreducible representa­
tions of superalgebras is the notion of atypicality: it corre­
sponds to the decoupling of some part of the representation 
appearing in the previous section; this phenomenon is associ­
ated with some values of am characterizing the highest 
weight A of the whole representation. 

A. Decoupling of the "higher-highest weights" 

We know from Proposition 3.1 that they correspond to 
T7- A = n7'~m_k nj~+m'bj- A, wherethebj- appear in 
their natural order. 

The decoupling of these "higher-highest" weights takes 
place when the operator T7 - is not invertible or when 
T~+T7-A =P7(h,)IA)=O. 

Proposition 4.1: 

T7+ n-IA) 

mJ!'~m(hm - ,~t+ ,h, + ~~,'h, + 2m - i - j)IA ) 

m~j~l+m 

and (i,j) ordered. 
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Proof There are two ways to obtain that result: 
(a) by recursion on k and I using n -IA ) 

= b ~ :; / I - Tlk - II - IA ), Tg - IA = b '::, - IA ) and using 
Eq. (2.6): 

n+ n-IA) = Tlk-II+(h m + ,~:~~+ I h, 

- ,~"'t~lh,)Tlk-II-IA) 

= (.1 7 - I + hm + , ~ :~~ + I h, 

m + 1 ) - L h, Tlk-II+Tlk-II-IA). 
t=m+ I 

(4.1) 

Using Eqs. (2.4) and (2.5), 

.1 7 - I 

m-'J 

= N(i,m) - N(j,m) + L (N(t,i - 1) - N(t,i)) 
l=m-k-l 

m+1 L (N(t,j + 1) - N(t,j)). (4.2) 
(=m+ I 

N (a, b ) is the number of times that a is equal to b in the 
product T 7 - = nb j - . In this case, .1 7 = k - I = 2m - i­
- j(i = m - k andj = m + I are the natural values of the 

indices). 
(b) Another way to get formula is to make a recursion on 

k and I in SUlk /1), noticing that when k = m, 1= n, it corre­
sponds exactly to the formula obtained by Kac (Ref. 6). 
These conditions of atypicality are expressed as 

am = t at - mf'a, - 2m + i + j, 
t=m+ 1 t=i 

m - k<,i<,m<j<,m + I. (4.3) 

B. The decoupling of the highest-highest weight on a 
floor does not mean that the whole floor decouples 

To see how this happens we need three more formulae: 
Proposition 4.2: Let A 7 = n -A be any highest 

weight; then a,A 7 has at least the same decoupling condi­
tions as A 7-

Proof Let us take m - k<,i<,m. This comes from: 
n+a/a,-T7-A =(h, +d7)P7(h,)A where using (2.3) 

d k -1- L (N(t,i - 1) - N(t,i)). 
m - k4.t~m 

So the zeroes of P7(h,) remain decoupling conditions. 
This proposition implies essentially that the members 

of a SU(m) ® SU(n) irreducible multiplet have the same de­
coupling conditions as their highest weight. 

Proposition 4.3: A 7 = T7 - A andX~ = T7a,A have 
not necessarily the same decoupling conditions. 

Proof 

+ Tk+ T k- -A pk(h h a, 1 1 a, = 1 j - au) ,A. 

but 

and 

+ Tk+ - rk-A h pk(h)A a, 1 a, 1 =, 1 j • 

J.-P. Hurni and B. Morel 

(4.4) 

(4.5) 

(4.6) 
Q.E.D. 
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Equation (4.4) implies others conditions of decoupling for 
some values of i. 

Proposition 4.4: If A 7 = T7 - A is a "highest-highest 
weight," there are only two meaningful ways to insert an 
even root a,-; it is either a,- T~ - A or T; - a, - A. 

Proof From Propositions 4.2 and 4.3 we know that they 
lead to inequivalent decoupling conditions. 

If one insertsa,- anywhere inside T7 - = nb j' , using 
Eq. (2.1) one can let it migrate to either end of the product. If 
we let it towards the right end (where lie the lower in order 
b; -- ), because (b j - )2 = 0 and because A 7 is a highest -high­
est weight, that will not introduce any new terms. 

C. Consequences on the atypical representations 

From Proposition 4.2 we know that an atypical repre­
sentation is made of irreducible multiplets ofSU(m) ® SU(n). 

In the case where the highest weight A of the superre­
presentation is a singlet of SU(m) ® SU(n), Propositions 4.3 
and 4.4 are irrelevant. But in the case where A is not a singlet 
ofSU(m) ® SU(n), lower-highest weight of smaller represen­
tations of SU(m) ® SU(n) are hidden behind the representa­
tion of the highest-highest weight. 

From Proposition 4.3 we know that they have not the 
same decoupling conditions as the highest-highest weights. 
The corresponding conditions can be deduced from Eq. (4.4) 
and Eq. (4.3). From Proposition 4.4 we know that Eq. (4.4) is 
the only new set of conditions to consider. It is important to 
realize that these new conditions are not new typicality 
conditions! 

They really are decoupling conditions if they coincide 
with the conditions given by Eq. (4.3). This occurs because of 
Eq. (4.5) which tells us that it is also possible from T7 - a,- A 
to come back to A by applying T7 + a,+ on T7 -ai' A. 

Equation (4.6) means that there is no reduction in the 
number of decoupling conditions for members of the multi­
plet ofSU(m) ® SU(n) whose highest weight is the highest­
highest weight A ;. In the next section we see examples on 
how things work. 

5. SOME EXAMPLES 
a l az 

Example 1: SU(1/2): ®-- 0 

The two negative odd roots are [3 - = a 1- and [3 1-
= [[3 -, a z-], a z- being the simple negative root associated 

with the bosonic subalgebra SU(2). The Cartan subalgebra is 
made of hi = 1[3 +,[3 -I and hz = [a z+, az]; the Cartan ma­
trix is (0_ I ~) and its elements au appear in: [h" a/] 
= ±aua/,ij=I,2. 

A representation is characterized by the highest weight 
A whose behavior under SU(2) is given by az. The corre­
sponding typical representation can be written as 
..1·(1 + 2 + 1) in terms ofSU(2); in particular, 

-If A is a singlet (a z = 0) we obtain a (1 + 2 + 1). 
-If A is a doublet (a 2 = 1) we have 

2(1 + 2 + 1) = (21 + (1 + 3) + 2z). 
The highest weight of the 3 corresponds to [3 -A which is 
decoupled by [3 +[3 - A = hlA = alA = 0, i.e., if a l = 0. 

The highest weight of the 22 corresponds to [3 1- [3 -A, 
and using Eqs. (2.6) and (2.3) one gets [3 +[3 t [3 .. - [3..1 
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= (h I - h2 - l)h 1..1; the decoupling conditions are a I = ° 
and az + I, i.e., 2 in the present case. These are exactly the 
decoupling conditions we would get from (4.3). 

Because [3 - a z- A does not decouple when a I = 0, 
at [3 + [3a 2A = (h I - 1 )hzA [which is equivalent to Proposi­
tion (4.3)], we see that the 1 does not decouple for a I = ° or 
a I = 2 so the representation is, if 

a l = ° 2 + 1 of SU(2), 

a I = 2 2 + I + 3 of SU(2), 

a l #0,2 2+(1+3)+2 

(it corresponds to the only case where the adjoint is a typical 
representation). 

Example 2: SU(2/2) 

a l a2 a3 

o_®_o 

The bosonic subalgebra is SU(2) ® SU(2) ® U( 1). [The 
bosonic subalgebra of A(I, 1) is SU(2) ® SU(2) only, but our 
method applies for SU(mln) Vm, n; not for A(m - 1, n - 1) 
when m = n.] 

The Cartan matrix is 

-1 

° -1 

Let a I±' a 3± = h± denote the simple roots, respectively, of 
the two SU(2)'s. The simple negative root [3 - is b ~ - in the 
notation of Sec. 2; other negative roots are 
b ~ - = [b ~ -, a 1- ]; b ~ - = [b ~ -, a 3- ] and 
b~- = [b~, a j-] = [b~-, a l-]. 

A representation of SU(2/2) with highest weight A in 
terms of representation SU(2) ® SU(2) is part or totality of 

..1.[(1,1) + (2,2) + [(3,1) + (1,3)] + (2,2) + (1,1)]. 

If A is not a singlet ofSU(2) ® SU(2), in general' each floor will 
correspond to a reducible representation. The higher-high­
est weight will correspond to 
A (II = b ~ - A, for the first floor 

I where we have (2,2)], 

A (21 = b ~ - b ; - A 

A (31 = b ~ - b ~ - A 

A W associated with (1,3), 

for the second floor 

A (31 associated with (3,1), 

A (41 = b ~ - b ~ - b ~ - A for the third floor, 

A (51 = b ~ - b ~ - b ~ - b ; - A for the fourth floor, 

leading to the decoupling conditions 
A (l}:a 2 = 0, 

A (i}:a2 = 0, az = - (a l + 1), 

A (31:a2 = 0, a2 = a3 + 1, 

A (41:a2 = 0, az = - (a 1 + 1) or a2 = + a j + 1, 

A (Sl:a 2 = 0, - (a l + 1), (a j + 1), a3 - ai' 

which are exactly those predicted by Eq. (4.3). 
Suppose A is (1,2) ofSU(2) ® SU(2), namely that the re­

presentation corresponded to a: 

° a l 

o_®_o 
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We will just look at what would happen to the first 
floor. It will be reducible and made of 

(1,2)X(2,2) = (2,1) + (2,3). 

b ~ - A corresponds to the highest weight of the (2,3). 
XI = r3- b ~- A andX2 = b ~r3- A are independent; the(2,1) 
corresponds to the linear combination (x I - !x 2); and the 
orthogonal combination is a member of the (2,3). 

There are two ways from X I and X 2 to get back to the 
highest weight A of the representations: by applying r3+ b ~ + 

and b ~ + r3+ , all the combinations lead to a2 = 0 as decou­
pIing condition (for example b ~ + r3+ r3- b ~ - A ) except for 
one, r3+ b ~ + b ~ - r3- A, which leads to a2 = 1. That means 
that when a2 = 0 the (2,1) is not decoupled; it is certainly 
coupled as well when as #0 so it is always part of the irredu­
cible representation. 

Let us define 10 such that XI -!x2 = loA. Ifwe call 
"norm" of the (2,1) the expression I 0+ loA, when a2 = 0, this 
norm is zero. (This is connected with the decoupling of part 
of the next floor for that value of a2 .) 

It certainly does not mean that the (2,1) is decoupled, 
though all the states which decouple have a zero "norm." 
(This "norm" is by no means a norm in fact; in particular it is 
not necessarily positive, and could be complex.) 

Example 3: SUI 1/8). 
In Ref. 8 an attempt has been made toward superunifi­

cation by studying the spectrum of particles for 0(8) - ex­
tended supergravity. In fact, these states fall into the repre­
sentation of SUI 1/8); here we study the relevant 
representation ofSU(1/8) and see whether the "trace condi­
tion" used in Ref. 8 to decouple some of the states from the 
physical spectrum correspond to use of an atypical represen­
tation; we find that it is not so. The bosonic subgroup is 
SU(8) ® U(I). We are interested in studying the representa­
tion where the highest weight is in a 8, corresponding to 

a l 

® _0_0_0_0_0_0_0 

The odd negative roots b j- form an 8 ofSU(8); therefore the 
I 

It is a bit messy but straightforward to find the following result: 

corresponding typical representations (according to Sec. 3) 
will correspond to a 28 X 8 dimensional supermultiplet: 

8 X (1 + 28 + 56 + 70 + 56 + 28 + 8 + 1) 

= 8 + (63 + 1) + (216 + 8) + (420 + 28) + (504 + 56) 

+ (378 + 70) + (168 + 56) + (36 + 28) + 8. 
From Proposition 3.1, 

A63 = b 1- A g , 

A 216 = b 2- b 1- A g , 

A 420 = b 3- b 8- b 1- A g , 

A 504 = b 4- b 3- b 2- b 1- A g , 

A 378 = b 5- b 4- b 3- b 2- b 1- A g, 

A 168 = b 6- b 5- b 4- b 3- b 2- b 1- A g, 

A 36 = b 7- b 6- b 5- b 4- b 3- b 2- b 1- A g , 

A g = b 8- b ;- b 6- b 5- b 4- b 3- b 2- b 1- A g , 

where b j- = [b j~ p rj- ]. 

The decoupling of these highest-highest weight is given 
[Eq. (4.3)] by the zeroes of 

iII(h l - ,t2h, + I- j )A, 
k = 1 corresponding to A 63 , k = 2 to A 216 , etc., and the con­
ditions for the decoupling of the corresponding states are 

as = 0,1,2,3,4,5,6,8. 

The conditions of decoupling of the lower-highest weight 
can be deduced by remarking 

AI = r2- r3- r4- r5- r6- r7- r8- A 63 , 

As = YJ- r4- r5- r6- r7 r8- A 216, 

A2B = r4- r5- r6- r7- r8- A 420, 

A56 = r5- r6- r7- r8- A S04 ' 

A70 = r6- r7- r8- A 378 , 

A56 =r7-r8- A I68' 

A 28 = r 8- A 36 . 

a2 irreducible representation 

typical 
=8 
=6 
=5 
=4 
=3 
=2 
=1 
=0 

8 + (63 + 1) + (216 + 8) + (420 + 28) + (504 + 56) + (378 + 70) + (168 + 56) + (26 + 28) + 8 
"8 + (63 + 1) + (216 + 8) + (420 + 28) + (504 + 56) + (378 + 70) + (168 + 56) + (36 + 28) 
8 + (63 + 1) + (216 + 8) + (420 + 28) + (504 + 56) + (378 + 70) + (168 + 56) + 28 
"8 + (63 + 1) + (216 + 8) + (420 + 28) + (504 + 56) + (378 + 70) + 56 
8 + (63 + 1) + (216 + 8) + (420 + 28) + (504 + 56) + 70 
8 + (63 + 1) + (216 + 8) + (420 + 28) + 56 
8 + (63 + 1) + (216 + 8) + 28 
"8 + (63 + 1) + 8 +-adjoint of SU(1/8) 
8 + 1 

I 

Notice in particular that one does not get the trace condition 
of Ref. 8. 

those of the highest-highest weight. 
Example 4: SU(2/3). 

Notice also that at each floor, in general the conditions 
of decoupling of the lower-highest weight are different from 

Finally we look at SU(2/3) with highest weight taken in 
a (2,3); namely the following representation: 
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1 a2 

o-®-o-o 

The corresponding typical representation would be 

(2,3)X{(I,I) + (2,3) + [(1,6) + (3,3)] + [(2,8) + (4,1)] 

+ [(1,6) + (3,3)] + (2,3) + (I,I)} 

=(2,3)+(1 +3, 1+8)+ [(2,3+ 15) 

+ (2 + 4, 6 + 3)] + [(1 + 3, IS + 6 + 3) 
+ (5 + 3, 3)] + [(2, 10+ 8) + (4 + 2, 1 + 8)] 

+(1+3,6+3)+(2.3) 

= (bl) + [(!JJ + (1-lJ + (!JJ + (3,8)] + [(2,3) 
+ + (2,15) + ... ]. 

(We underlined the atypical adjoint representation) 

1 ° ° 1 
o-®-o-o 

The odd roots are 

b~-; b)- = [b}-, a l-], j=2,3,4, 

b;- = [b~-, Y;], b~- = [b~-, Y4-]' i= 1,2. 

The other conditions of decoupling are obtained using 

A: =al-Y;Y4- A L 
Ai = Y;Y4- A L 
A ~ =a l- A~, 

A~ =al-AL 
A ~ = Y 4 Y 3- A in-, 

A ~ = Y4-Y3-A Ts, 
A ~ =a l- At 
A j = a 1- Y 4- A t 
A j = Y4- At 
A ~ = Y;Y4-A L 
A ~ = a l- A:, 
Ai =al-Y3-Y; A:, 

Since it is a bit tedious to extract all the conditions of typic a­
lity, we will do one example in detail, the (1, 16) of the third 
floor. Its highest weight A ~ is hidden behind A A From 
A is = b ~ - b j - b i-A ~ one extracts the decoupling condi­
tion from h2(h2 + hi + l)(hz - h3 - l)A ~ which is equiv­
alent to the previous formula (5.1). To get to A I we have to 
plug al- and Y- anywhere in the product (5.2): there are 4 
inequivalent configurations: 

A! =b~-b~-b~-al-Y4AL 

B! =al-bi-bj-b~-Y4-AL 

C! = Y4- b ~ - b ~ - b ~ - Y 4 A L 
D! = a]- r 4 b i - b ~ - b ~ - A ~. 

A, B, C, D span a four-dimensional space in which lies one 
memberof(3, 15), (3, 6), (1,115), (1, 6). 

So, 

-2,0 
1 
2 

162 

decouple 

(3, 15) + (1, 15) + (1, 6) + (3, 6) 
nothing 
(3, 15) + (3, 6) 
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The highest-highest weights are 

1st floor: A ~ = b~- A L 
2nd floor- A 2 = b I - b 2 - A 2 A ~ - b 2- b 2- A l 

• IS 2 2 3' 6 - 3 2 J' 

3rd floor: A is = b ~ - b ~ - b ~ - A L 
A~ =b~-b~-b~-AL 

4th floor: A ~ = b j - b ~ - b ~ - b ~ - A L 
Ai =bi-b~-b~-b~-A~ 

5th floor: A ~ = b _\ - b ~ - b ~.- b ~ - b ~ - A L 
6th floor: A ~ = b ~ - b ~ - b ~ - b ~ - b ~ - b ~ - A 3 . 

If a highest-highest weight corresponds to 
(II k ";,,20,,,b j - ) A ~, the corresponding conditions of decou­
pling are [Eq. (4.1)] 

k~;ll'V",( h2 - rt3hr + rt;hr + 4 - i-i) . 
The case of A: for example gives a 2 = 0, - 2,1,3. 

A:s=a;-A-h. 
A ~ = Y4- A-tr, 
A ! = a 1- Y 4- A h, 
A ~ = Y3- Y4- A h, 
A ! = a 1- Y3- Y 4- A -iT, 
A ~ = a 1- Y4- A L 
A j = Y4- A L 
A ~ = a 1- Ai. 

(5.1) 

To apply the results of the previous sections we will 
consider instead the equivalent four states obtained by shif~­
ing a;- Y- to the left: 

Ei =bi-b~-bi-AL 
F~ =b~-b~-b~-AL 

G! =b~-b~-b~-/q. 
From Proposition (4.2) we see that the decoupling conditions 
of D! are the same as A is [Eq. (5.3)], i.e., a2 = 2, 0, 2. 

It is easy to find [cf. Eqs. (4.4) and (4.5)] that the corre-
sponding conditions for 

E!: a2 = - 2,0,2, 

F!: a2 = - 2,0, 

G !: a2 = - 2,0,1. 

remain 

nothing 
(3,6) + (1,6) + (1, 15) + (3, 15) 
(1,15)+(1,6) 
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The decoupling condition a2 = 0 is compatible with the ad­
joint representation and with the fundamental 
representation 

000 
o--®-o-o 

which is the underlined part of 

(2,1)X{(1,1)+(2,3)+ [(1,6)+(3,3)] + [(2,8)+···] + ... } 

= (b.!) + (1,3) + (3,3) + (2,6) + (4,3) + ... 

6. REMARKS AND CONCLUSION 

In this paper we give a recipe to build explicitly typical 
and atypical representations of a superalgebra SU(mln). 

A typical representation is naturally connected to the 
following expansion in terms of Grassman variables 5 j 
where i = 1, ... ,m,j = 1, ... ,n. 

k = 1 •... ,n iL ... jk., 

1= 1, ...• m jl".j{ 

is an SU(m)xSU(n) group index which characterizes the 
SU(m) X SU(n) representation to which the highest weight A 
of the superrepresentation belongs. 

This expansion can (cf. Berezin, Ref. 7 and references 
therein) be seen as an expansion on a supermanifold. 

In the case when A is a singlet ofSU(m)XSU(n), an 
atypical representation corresponds to the case where only a 
certain number of the 5; are linearly dependent, which could 
correspond to the manifestation of some constraints. That 
means atypical representations would correspond to nontri­
vial supermanifolds. 

In the caser(x, 5) is a tensor field on the supermanifold, 
we saw that the decoupling scheme is more complicated and 
this should reflect here. 

163 J. Math. Phys., Vol. 24, No.1, January 1983 

All this is related to the understanding of the represen­
tation of the supergroups which is still preliminary. 

Local and global invariance under supergroups, when it 
is understood, should be closely related to extended super­
gravity and super Yang-Mills, should provide for a more 
systematic approach to them, and then allow a deeper under­
standing of these kind of theories. 
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In this paper we establish the existence of a faithful matrix representation of finite type for every 
connected simply connected graded Lie group. We also show the 1-1 correspondence between 
finite-dimensional representations of a graded Lie algebra and the representations of finite type of 
the corresponding connected simply connected graded Lie group. 

PACS numbers: 1l.30.Pb, 02.20.Qs, 02.40. - k 

I. INTRODUCTION 

Recently, Kostant I has given a very elegant formula­
tion of the theory of graded Lie groups. Mathematically the 
formulation seems to be more attractive than the one given 
by Kac and Berezin,2 although few physical applications of 
Kostant's formulation have been made. In view of the quite 
detailed knowledge we have regarding the representation 
theory of Kac-Berezin graded Lie groups, J it would be nec­
essary for us to study the representation theory of the Kos­
tant graded Lie groups so as to make the similarities between 
the two formulations more transparent. Our results in this 
direction can be summarized by 

Theorem 1: There exists a faithful matrix representa­
tion of finite type for every connected simply connected (csc) 
graded Lie group. 

Theorem 2: The finite type representations of a csc 
graded Lie group are in 1-1 correspondence with the finite­
dimensional representations of the corresponding graded 
Lie algebras. 

In Sec. II, we give a brief resume of Kostant's formula­
tion, while in Sec. III, we prove the above theorems. 

II. RESUME OF THE KOSTANT THEORY I 

Let g = ~) + g) be a Z2 graded Lie algebra over K = R 
or C. Let G be the unique csc Lie group with Lie algebra go. 

Definition 14: The K-group ring of G, K (G), is the free 
abelian group generated by elements of the form (r, g), rEK, 
gEG. Explicitly, K (G) is an algebra over K, with the 
properties 

(r), g) + (r2' g) = (rl + r2, g), 

r(r» g) = (rl' g)r = (rrl' g), 

(rl' g)·(r2' g') = (r lr2 , gg'), r, r,EK, g,g'EG. (1) 

In the sequel, we denote the element (r, g) by rg. 
Let U (g) be the universal enveloping algebra over g, i.e. 

U (g) = T (g)/ Jwhere T(g) is the tensor algebra over g, andJis 
the two-sided ideal of T(g) defined by elements of the form 

X® Y - (- 1)lx l-IYly®X - [X, Y], X,YEg, (2) 

where, e.g., IX I = Z 2degreeofX. Note, of course, that U(g)is 
bigraded W.r.t. Z2 ® Z. Both K (G) and U (g) are in fact Hopf 
algebras. We recollect 

Definition 2': A Hopf algebra over K is a triple (H, Ll, 
1 K ) where H is a graded algebra over K, Ll: H-+H X H (the 

coproduct) and 1 K: H-+K (the counit) are homomorphisms 
of graded K algebras such that the diagram 

IlfXI K HXK 
.l ____ ~ (3) 
H-+HXH~ ~ 

IKXI lf KXH 
commutes. 

The mapLl can be explicitly given for K (G) and U(g): if 
gEK (G), then Ll (g) = g ® g while if XEg, 
Ll (X) = I ® X + X ® 1, Ll being defined over the rest of U (g) 
by the fact that Ll is an algebra homomorphism. 

Finally, let ad: ~ X g-+g, (X, Y)-+X, Y] be adjoint map­
ping restricted to~. We know that ad exponentiates to give a 
unique map 1T: G X g-+g such that the diagram 

ad 

(4) 

Gxg - g 

commutes, where exp: go-+G is the usual exponential map. 

Definition 3: The csc graded Lie group E (G, g) with 
graded Lie algebra g is defined to be 

E(G, g) = K(G)#U(g), (5) 

where #, the smash product, is taken W.r.t. 1T. Explicitly, 
E (G, g) is a Hopf algebra generated by elements of the form 
(g, X), gEG, XEg with the properties 

(i) (g,X).(g', Y)=(gg',X'1T(g, Y)), 

(ii) Ll (g, X) = (Llg, LlX), g, g'EG, X, YEg. 
(6) 

Ifgis trivially graded (g = ~)) thanE (G, g) can be shown to be 
isomorphic to the set of all distributions on C "'(G) with fin­
ite support. Kostant has shown that if g is nontrivially grad­
ed, then a similar interpretation can be given in terms of 
distributions with finite support on a certain sheaf of com­
mutative graded K algebras. 

III. PROOFS OF THE THEOREMS 

Let E (G, g) be a csc graded Lie group. 

Definition 4: A representation of E (G, g) in E'( G " g') is a 
map.l': E (G, g)-E (G', g') which preserves the Hopfalgebra 
structure. 

Definition 5: A representation.l': E (G, g)-+E (G', g') is 
said to be of finite type if g' is finite dimensional (as a vector 
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space over K ). 

Theorem 3: There exists a faithful matrix representa­
tion of finite type for E (G, g). 

Proof By the generalized Ado Theorem/' we have the 
existence of an isomorphism 

a:g-g', (7) 

where g' is a finite-dimensional matrix graded Lie algebra, 
such that ao = alg., is an isomorphism ao: go-&;. We know 
that a o exponentiates to define an isomorphism exp a o: 

G---+G', where G, G' are the csc Lie groups with Lie algebras 
go' gb. Further exp a() extends to a unique isomorphism 

exp a o: K (G )---+K (G ') (8) 

of Hopf algebras. 
Also, by the universality of U (g), a defines an isomor­

phism U (a): U (g)-U (g') ofHopf algebras. Consider the map 

.!"=(exp aoX Ural): K(G)x U(g)-K(G')X U(g'). (9) 

We now show that.!" is in fact an isomorphism.!": E (G, g) 
---+E (G', g') ofHopfalgebras. It is clear from the above that.!" 
preserves the coproduct and the counit in K (G) X U (g). It is 
therefore sufficient to prove that.!" commutes with rr. Con­
sider therefore the following diagram: 

g/) xg' 
ad 

g' 

\ / 
g 

ad 
~) X g -----..... ~ 

exp Xl exp Xl 

rr • 

(1) 

G'Xg' ______ rr ________ • g' 

(10) 

The outer diagram and all the subdiagrams except the sub­
diagram (1) commute, hence the diagram (1): 

rr 

---+ g 
exp aoXa 1 a (11 ) 

G'Xg' - g' 

also commutes which shows that.!" commutes with rr. Hence 
the theorem. 

Lemma 1: Let a: g-g' be a representation with 
dim g' < 00. Then a defines a unique representation 
2:E(G, g)-E(G', g'). 

Proof.I is constructed as in the proof of Theorem I, i.e., 
.I = exp ao X U (a). To prove that.I commutes with rr, we 
note that E (G, g) and E (G " g') can be assumed to be matrix 
graded Lie groups. For such groups, we know that rr(g, X) 
= gXg - 1. Assume that g = exp Z, ZE&J. Then, 
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rr(g,X) = I (adZr X. 
n =0 n! 

Now, 

.!" ! (g, X), (g', y)J =.!" (gg', X-gYg-l) 

= (exp ao(gg'), a(X).a(gYg-I)). 

g, g'EG, X, YEI!. (12) 

Also 

a(gyg-I)=aC~o (adn~r Y)= n~o (ada:!(Z)t oiY) 

=rr(expao(Z),oiX)), (13) 

where we have made use of the fact that E(G, g) is a matrix 
graded Lie group in the second step. Now, if g = exp Z·g', 
g'EG, then we have, 

oigYg-I) = expo"o!Z)oig'Yg,-I)exp( - O"o(Z)). (14) 

Hence, a(gYg-l) = (exp ao(g))·Y·(exp O"o(g-I))'VgEG. prov­
ing that.!" commutes with rr. Hence the lemma. 

Lemma 2: Every representation.I: E (G, g)---+E (G', g'), 
E (G, g), E (G', g') csc graded Lie groups of finite type, defines 
a unique representation a: g---+g'. 

Proof Obviously a =.I Ig is a representation, 
0": g---+U (g'). The fact that 1m O"~ g' follows from the fact that 
Ural =.I I Ulgjpreserves the Z degree. 

As an immediate consequence, we have 

Theorem 4: There is a I-I correspondence between the 
finite-dimensional representations of a graded Lie algebra 
and the representations of finite type of the corresponding 
csc graded Lie group. 

Finally, let Y Y.d be the category offinite-dimension­
al graded Lie algebras and let Y .5t' Y be the category of csc 
graded Lie groups of finite type. 

Let %00: Y .5t' .d ---+Y .5t' Y be defined by 

% oo(g) = E(G, g), 

% oo(a: g_g') =.I ': E (G, g)-E (G', g'), (IS) 

using the notation of Theorem I. Then, 

Corollary: %00 is a covariant functor from Y .5t' .d to 
Y .5t' Y . Further %00 is invertible, i.e., there exists a func­
tor %00 -I: Y .5t' Y _Y .5t' .d such that %00 0 %00- 1 

= 1.9Y:7 and %00- 10%00 = 1.'9..1".01, where I;yy.if and 
I:,. .Y;" are the identity functors on Y .5t' .d, Y .5t' Y , respec­
tively. 

We hope to report on more investigations in this direc­
tion in a future paper. 
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A recent method of quantization is examined. A condition is found to isolate suitable Fock 
~epresentation~. Using these representations and a generalized Klein transform the quantization 
IS compared wIth the normal quantization with U(m) symmetry. Finally the connection of this 
work with the color superalgebras is shown. 

PACS numbers: 12.35.Ht 

1. INTRODUCTION 

Generalized methods of quantization were first pro­
posed in 1953 by Green. 1 These schemes of quantization 
were known as para-Fermi and para-Bose statistics and had 
Fermi and Bose statistics, respectively, as special cases. 

These quantizations remained somewhat of a curiosity 
until 1964 when Greenberg2 applied them to the recently 
formulated quark model. He postulated that quarks were 
actually parafermions of order 3 rather than fermions (which 
are parafermions of order I). This model allowed baryons to 
be symmetric with respect to interchange of quarks-a prop­
erty which seemed to be required by experiment. This, in 
fact, was the first introduction of color into a quark theory. It 
was then shown3

.4 that the Greenberg model is essentially 
equivalent to the three-triplet color model. In other words, 
by replacing fermions by parafermions of order 3 one is real­
ly introducing an SU(3) (to be strictly correct U(3)] symme­
try into the quark model. This symmetry is now known as 
color. 

Attempts to pursue this "algebraic" notion of color 
further have run into difficulty with the "cluster property."s 
Basically what this says is that the creation and annihilation 
operators for quarks must always remain "confined" to the 
same baryon or meson. In order to resolve this difficulty 
Green in 19756 introduced a different generalized quantiza­
tion which satisfied the cluster-property. This is known as 
modular quantization, the name modular deriving from the 
"clustering" of creation and annihilation operators into 
"modules." The aim of this paper is to examine the relation­
ship between this new method of quantization and an ordi­
nary quantization with U(m) symmetry. This comparison 
has already been carried out in some detail for para-Fermi 
statistics by Druhl et al. 4 

We begin by reviewing briefly the basics of the represen­
tation theory for para-Fermi quantization. The basic rela­
tions satisfied by the creation and annihilation operators are 

[am'~ [at,ad _] _ = Omk a" 
(1.1) 

[am' [ ak ,ad _ ] _ = 0. 

Solutions to these equations are given by the Green's ansatz 
p 

ak = I blj;l, (1.2) 
a=J 

where the b Ij;I satisfy 

[b t1al,b \al ] + = Ok" 

[b Ij;I,b \al] + = 0, 

[ b t1al,b \fJ I] _ = 0, a =j:.p, 

[blj;l,b\fJI]_ =0, a=j:.p. 

(1.3) 

Greenberg? showed that if one takes a Fock representation 
of the Von Neumann algebra of the ak which satisfies 

akarl> =pok,l> 
with (1.4) 

akl>=O Vk, 
then all irreducible representations (up to unitary equiv­
alence) are given by the Fock representation ofthe Von Neu­
mann algebra of the b Ij;I [through (1.2) naturally]. It should 
be noted that there are possibilities for irreducible Fock re­
presentations not satisfying (1.4). These are the so-called res­
ervoir states of Govorkov. 8

•
9 It would appear, however, that 

these result from choosing a non vacuum state in the repre­
sentation of the b Ij;I's as a vacuum state for the ak 'so 

We now move on to consider Modular quantization. 6 In 
the original paper the relations for the creation and annihila­
tion operators are given with the aid of a "color" superscript 

ayla~1 + a~- \ lay + \1 = 0, 
(1.5) 

a*lrlalsl + ais+ 1Ia*lr+ II = 0 O. 
J k k J rs Jk· 

The color superscript being defined with the aid of a unitary 
operator u which satisfies 

um = I, m integral, 

and defines the color superscript through 

a~1 = u - ra~lur. 

(1.6) 

(1.7) 

It is possible to obtain relations not involving the super­
scripts, 

ak, ak, ···ak", ak", I I + ak", t I ak, ak, ···akm ak, = 0, 

at,ak,ak, ···ak ", t I + ak,ak , ···akm I ,ak,at, 

ajata, + a,ataj = 0jka, + O'kaj' 

if we set aj =ayl for any r. 

( 1.8) 
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The natural question to now ask is how the Fock repre­
sentations ofthe a k corresponds to those ofthe full a~) alge­
bra? Denote by silO the former algebra satisfying (1.8) and 
by f1(j the latter satisfying (1.5), then we have the following 
theorem. 

Theorem: If a Fock representation of.2ff satisfies 

n < m ak ak ···ak a*a* · .. a* I) = {jk . {jk . .. ·{jk . I), (1.9) 
, I '1 n In 1" - 1 11 III 212 "J,., 

then it is unitarily equivalent to the subspace of the Fock 
representation of f1(j generated by a~) (s fixed). 0 

We first prove the following 
Lemma: if 

ifJ =at, at, ... atl) r<m, 

then 

ajatifJ = {jjkifJ. 0 
Proof: For r = m - I the result is immediate due to the 

second equation of(1.8). For r < m - 1 consider firstlYi = k. 
The third of(1.8) shows 

ajajajifJ = ajifJ 

~llajajifJ 112 = IlajifJ 112 = ( ifJ,ajajifJ)· (1.10) 

However, (1.9) means that IlajifJ 112 = 1 (providing I) is nor­
malized) and IlifJ 112 = I so (1.10) shows immediately that 

ajajifJ = ifJ as required. 

Fori=/=k we have 

ajajat + atajaj = at 

~llajatifJ 112 + (ajaj*ifJ,akatifJ ) = ( ifJ,akatifJ ) 

~jatifJ = 0 as required. 
Corollary: The lemma together with the second equa­

tion of (1.8) shows that any state in a Fock representation of 
.2ff can be written as a sum of terms such as 

U = at at ···at I), s arbitrary. 0 
" , 

A fact that we will have cause to use later. Now the first and 
second of(1.8) together with (1.9) show that for any term of 
the above form which is nonzero there exists an operator 
VE.2ff s.t. VUI) = I), namely 

which means that any AE.2ff has a BE.2ff s. t. BA I) = I). This 
enables us to say that .2ff I) is irreducible. In order to show 
that f1(j I) is irreducible it is necessary to carry out a linear 
transformation on the color indices 

m-I 

b';)=m- I / 2 L E- af3a)f), (1.11) 
f3~1 

where Em = 1 (E is the mth primitive root of unity). This 
transformation will later be seen to be central to the modular 
quantization. The b la) satisfy 

b ';)b if3 ) + cia - f3)b if3 )b ~a) = 0, 

b rla)b if3 ) + ci f3 - alb i(3 )b ria) = {j{Ja{jkl' 

U - rb ';)ur = c'ab ';l. 

(1.12) 

Now if f1(j' is the algebra generated by the b la) then because 
the transformation given by (1.10) is invertible it is easy to see 
that f1(j' I) = f1(j I). Further, the operators br(a)b ja) are num-
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ber operators in the usual sense and consequently the vacu­
um projection operator for f1(j' (and f1(j) is 

sin 1T'b *Ia)b la) 
A - IT k k 

- '"'b *Ia)b la) • k,a "k k 

This shows that f1(j I) is irreducible. 
Finally, with the lemma above, it is possible to calculate 

any vacuum expectation value of .sf. So (1.9) and (1.8) to­
gether define an irreducible representation up to unitary 
equivalence. It is easy to check that (1. 5) implies that (1. 9) 
holds on any subspace of f1(j I) generated by d s

) (s fixed) and 
so the theorem is proved. It is worth noting, in passing, that 
for m = 2, (1.8) and (1.9) become the defining relations for 
parastatistics of order 2, apart from a numerical factor. 

It could still be asked whether the conditions (1.9) are 
necessary to obtain the relevant Fock representation. We 
remark only that this indeed is the case if we assume that 
there exists number operators nk with the properties 

[ak,n[] = {jklak' (1.13) 

S.t. nk I) = 0, 

where PI' is the energy-momentum tensor. Po = H the Ha­
miltonian, can have no negative eigenvalues which implies 
that nk has none. It is not hard to see now that for n<.m 

= a(k l ,k2,· .. kn,in,in -I , .. ·,il) I), 
where a is a numerical factor. We have then 

(I),WI») =a(k l ,k2, .. ·,kn,jn, .. ·,jIl· 

So unless this vacuum expectation value has the value 

{jk,j,{jk,j, .. ·{jkojo' 

then we have a unitarily inequivalent representation. As a 
final observation we see that 

( I), WI) ) = (a~ a~ _ I ... aj~ I ) ,at at _ I ... at, I) ), 
which shows that there are n! independent Un-particle" 
states for modular quantization, in the usual Fock represen­
tation given by (1.9). This contrasts with the situation in 
para-Fermi quantization, see Ref. 11, where there are in gen­
eral, less. 

2. HEISENBERG'S PRINCIPLE 

As Green pointed out in his original paper, if one de­
fines PI' as 

PI' = f C~: i"'*lr)af/l;~fl ) d 3X , (2.1) 

and one assumes that the ifJ ~),ifJ *Ir)a (the spatial operators 
corresponding to the ak ,at) satisfy the equal-time relations 
[corresponding to (1.5)]. 

I/I*lr)af/l/J) + f/I/J+ 1)1/1*(7+ I)a ={jr,s{ja.f3{j(~a -~(3)' 
(2.2) 

f/I;)f/I/J) + f/I/J - I)f/I; + I) = 0, 

then Heisenberg's principle is satisfied. 
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Now what is the interpretation to be given to the color 
superscripts? In this paper we shall adopt the following in­
terpretation. The only physical states shall be those given by 
applying fields with a fixed color index to the vacuum. The 
color superscripts can be regarded as a mathematical conve­
nience. 

In this light, and given that the P" given in (2.1) is 
unique (see for example Takahashi 12), we are faced with the 
following possibilities. 

1. Assume P" has the form (2.1) and that the appearance 
of the superscripts is needed 13 to construct physical observa­
bles but is not needed in constructing physical states from 
the vacuum. This is somewhat analogous to the color singlet 
hypothesis of Q.e.D. We adopt this approach below. 

2. Drop Heisenberg's principle (l). This is not as severe 
as it sounds for the following reason: suppose we take the tPa 
to be the fields for "unobservable" quarks, then we would 
not expect that Heisenberg's principle should necessarily 
hold for the individual quark but merely for the meson 
",*a"'a ,"'a ",*a composites and the baryon ",*a",*a",*a ... ",*a 
(m factors) composites. If we were to take P" as 

P" = f i[ tP*a,"'a.,,] _ d 3X , (2.3) 

then the following would hold [using (2.2)]: 

[p",[",*a''''a]+]_ = -ia"([,,,*a''''a]+)' (2.4) 

[ p",,,,*a,,,*a ... ,,,*a] 
m factors 

= _ i[ ",~:",*a ... ",*a + ",*a",*a ... ",*a",~:]. (2.5) 

Equation (2.4) evidently has the correct form. However, (2.5) 
appears somewhat different to what one would expect. 
This difference can be explored if one introduces the unitary 
operator U(a!") corresponding to space-time translations 

U(a")=exp(ia"P,,). (2.6) 

Equation (2.5) can then be used to show that 

U *(a"),,,*a( x)",*a( x,) ... ",*(al( xm)U (0") 

= ",*a( x + o"),,,*a( x') ... ",*a( xm - I)",*a( xm + 0"). 

This has the naive interpretation that when a baryon is sub-

FIG. I. The algebras associated with para-Fermi quantization. The shaded 
area represents algebraic elements which are possible physical variables, for 
example PI" 
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jected to a space-time translation only two out of the m 
quarks it contains are translated and the others are "left be­
hind." Clearly this indicates that the x in tP *a( x) cannot 
have the straightforward interpretation that it does in usual 
field theories. For this reason we consider the possibility of 
PI' given by (2.3) as somewhat questionable. It is interesting. 
however, that objects not of the usual tP *tP or tP *tP * .. ·tP * (m 
factors) form (or products thereof) fail to satisfy relations of 
the form (2.4) and (2.5) and could be considered to be as 
"unphysical' as quarks. 

3. TRANSFORMATION TO FERMI FIELDS 

We begin, as previously, by reviewing briefly the Para­
Fermi situation.4 This is summarized in Fig. 1 to which the 
following comments are addressed. 

The ansatz fields are the spatial analogs of the operators 
given in (1. 3). As a result of Greenberg'S work one may re­
gard the parafields as a sub-algebra of these fields, providing 
one is taking the usual Fock representation. The transforma­
tion to the Fermi fields is achieved by the nonlocal Klein 
transformation. Explicitly we have 

tP Irl = ",lrlKr + l' r odd, 

= - i",lrIK" r even, 

Kr = exp [i1T str f ",*lsl",lsld 3X J, 
Kr = K~ = K r- 1. 

(3.1) 

For the Modular Fields the situation is slightly more compli­
cated as has been intimated in the previous section. The read­
er is referred to Fig. 2 and the following comments are ap­
propriate. 

The restricted fields are the fixed color indice fields 
mentioned previously and can be taken to satisfy the spatial 
analogs of Eqs. (1.8). Provided we have a Fock space satisfy­
ing ( 1. 9) they may be regarded as a subalgebra of the expand­
ed fields. 

The ansatz fields are the spatial analogs of the operators 
in ( 1.12) and can be obtained from the expanded fields via the 

FIG. 2. The algebras associated with modular quantization. The shaded 
area represents possible physical variables; the PI' which satisfies Heisen­
berg's principle is included. The dotted area shows where the "non-Heisen­
berg" PI' is located. 
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unitary transformation given in (1.11). The transformation 
to Fermi fields can be achieved by the following "General­
ized Klein transformation" 

t/J Irl = ur - It/> (rl. 

As Green has pointed out, u may be written as 

u = exp (itT 13), 

with 

1 . m- 1 

13=--1 I (A,,+I -Ar+ lr ), 
2Jiii r~O 

Ars J ",*(rl",*I$1 d 3X, 

which is similar in form to the third equation of (3.1). 

4. THE CONNECTION WITH GAUGE INVARIANT 
THEORIES 

(3.2) 

(3.3) 

Doplicher et al. 14 have considered field theories (with 
normal commutation relations) in which a global gauge 
group "selects" out an "observable" algebra from a field al­
gebra, in the sense that the observable algebra is the subalge­
bra of the field algebra left invariant by the gauge group. It 
also must obey the usual condition for observables-that of 
local commutativity. They show that in such a theory the 
super-selection quantum numbers are in one to one corre­
spondence with the equivalence classes of irreducible repre­
sentations of the gauge group. 

If a para-Fermi theory is considered,4 then providing 
certain obvious conditions are met then the Fermi fields in 
Fig. I can be regarded as above. As the above authors point 
out it is possible to identify various subalgebras of the para­
field algebra which obey local commutativity. When these 
are written in terms of the "normal" Fermi fields they be­
come "observable" algebras in the sense described above. 
Now providing one assumes that Kr I) = I) then the Fock 
space Hp generated by the parafield algebra is contained in 
that generated by the Fermi fields. So in order to decide 
which gauge group is the appropriate one for parafields it is 
necessary to observe whether all super-selection numbers 
are possible in Hp (or equivalently, from above, whether all 
irreducible tensors of the gauge group are included in Hp ). 
This turns out to be the case only for the group U( pl. 

The conclusion then is that the Fock-like para-Fermi 

I 

field theory is essentially equivalent to a normal Fermi the­
ory with U(p) symmetry except that the degeneracy asso­
ciated with a particular set of super-selection numbers is less 
in the former case. In the case of Modular field theory the 
situation is somewhat different since when Heisenberg's 
principle is assumed (as we shall do) PI' lies outside the re­
duced algebra (the analog of the para-Fermi algebra). Cer­
tainly then, "observable" algebras cannot be constructed 
purely from this algebra. In fact, we shall consider construc­
tions from the expanded algebra. Following the philosophy 
put forward in Sec. 2 we shall regard the Fock space H R 

generated by the reduced algebra as the physical Hilbert 
space. 

We shall concern ourselves with the algebra l5 generat­
ed by elements of the form ( x I,X2 belonging to some region V 
of space-time) 

m-I 

U (x I'X2)- I ",*Irl( x 1)",lrl( x 2), (4.1) 
r=O 

upon transformation to the Fermi fields we obtain 
m-I 

U( x l 'x2 ) = I t/J *(rl( xl)t/J Irl( x 2 )· (4.2) 
r = 0 

As has been observed, 14 this algebra is the subalgebra of the 
Fermi-field algebra which is invariant under the gauge 
group U(m). The gauge group being implemented through 
the automorphisms 

m-I 

ag(t/J1r)(x l ))== I Arst/J(SI(xIl, (4.3) 
5=0 

where the matrix A rs being a representation of U(m) and 
gEU(m). It is worth pointing out that PI' is also invariant 
under U(m), a fact which is also true in the para-Fermi case. 

Consider now the space H R mentioned above. This 
space will become a subspace of the Fock space Y generated 
by the Fermi fields provided that u I) = I) which we assume. 
(The G.N.S. construction of the Hilbert spaces precedes in a 
nearly identical manner as para-field theory4). It remains to 
be seen then, whether HR contains all inequivalent irreduci­
ble tensors ofU(m). We begin by proving the following 
theorem. 

Theorem: Let 8 be the Young symmetrizer correspond­
ing to an arbitrary Young tableau with no more than m co­
lumns. Let the permutation group Sn be implemented as 
follows: 

yE Sn Y("'*( x Il"'*( x z)···"'*( x n)) = "'*( x YII ) )"'*( x y1ZI ) ... y*( x y1n )). 

Then 

8( ",*(xIl···"'*(xn))#O. 

Proof It clearly suffices to show that 
o (4.4) 

8( "'*( x l)···",*( xn))l) = 8(",* xIl"''''*( xn)l) )#0. 

Now 
m-I 

"'*( x I)"''''*(xn) = I ",*lr,l( X Il",*(r,)( xz)···",*lrn
)( xn)l) 

r .. '2,. .. r" = 0 

m-I 

I f(rl,rZ, ... ,rn)t/J *Ir,)( xl)t/J *lr2
)( Xz)···t/J *Irn

)( xn)I), (4.5) 
r[,r2' ...• r" = a 
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with 
n 

L Ij - nT, - L TfYi 

/(r1,rZ, ... ,rn )= E' ~ I i<i =1= 0, (4.6) 

where (3.2) and (1.12) were used. 
For notational purposes we write each term of (4.5) as 

/(r l "2> .. ·,r" )(rl)(rz)···(rn)I), 

and the sum as 

(4.7) 

the order of the brackets indicates which variable x j they 
refer to. 

Consider now an arbitrary y E Sn, then 

y(t,b*{ xd"'t,b*( x,,)1 » = y(f(r"rz,···,rn ))[rl ] [rz] '" [rn ] I) , 
(4.8) 

y(f(rl,rz,···,r n ))=sign(y)/{r 111),r 112) , ... ,r 11nl)' 

Now let 8 = f)'T} where 'T} is the symmetrizer and f) the anti­
symmetrizer for the Young tableau in Fig. 3. We have then 

8{t,b*{ xl)· .. t,b*(xn)I» = 8(f{rl,r2 , .. ·,rn))[rl ] [r2 ]"'['n] I). 
(4.9) 

Since any term (ro)(rd···(rn) is linearly independent of any 
other term (SO){SI)"'{Sn) unless So = 'O'''',Sn = rn (see, for ex­
ample, Ref. 16), it clearly suffices to show that 

A -8(f(0,1, ... ,s{l) - 1,0,1, ... ,s(2) - sill 

-1, ... ,O,I, ... ,n -s(t) -1))=1=0. 

Consider first 

'T}(f(O,I, ... ,s(l) - 1,0,1, ... ,s(2) - sill 
- 1, ... ,0, I, ... ,n - s(t) - I)) 

= d'T}I(f(O,I, ... ,s(l) - 1))'T}z(f(O,I, ... ,s(2) - s{l) - I)) 

·"'T},(O,I, ... ,n - s{t) - I)), 

where 
, 

[I L s(/Jls[/+ I)-s(l)][s(l+ I)-s[/)- III 
d=e ,~' 

and where the 'T}; are the symmetrizers for the ith rows of the 
Young tableau. Defining 

m;=s(i) - s(i - l)<m, 

we have 

'T}j(O, I, ... ,m;) = e - C I sign(A )etA
), (4.10) 

perm 

where 

mf-l 

c_ I ij, 
O<i<j 

and 
mj-l 

g(A)== I fA (i), 
;=0 

and A is an arbitrary permutationof(O, l, ... ,m j - I). Now the 
right-hand side of (4.10) is just 

e- C det (S), 

where S is the m; X m i Sylvester matrix 
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1-1 ~------ 5(1) ---------1-1 

v, . -- .. ----~ 

FIG. 3. The Young tableau referred to in the text. 

S is (apart from a factor of 1/Im) the inverse of the transfor­
mation given in (I.II). It determinant is given by 

m1-l 

det (S) = II (e i 
- El) (4.11) 

i>j>O 

(see, for example, Ref. 17), which is clearly nonzero for 
m i <,m (and zero for mj > m which is why the Young tableau 
may have no more than m columns.) Thus 

A = f) [h(O,I, ... ,s(l) - 1,0,1, ... ,s(2) - 2(1) 

- 1, ... ,O,I, ... ,n -sIt) - 1)], 

where h =1=0. It is obvious from the definition (4.8) and the 
character of f) that 

u 

A = II Vjh =1=0, 
i= 1 

where Vi is the number of boxes in the ith column of the 
Young tableau. Thus the theorem is proved. As a corollary 
to the theorem we note that 

(4.12) 

Consider now the algebra X generated by elements such as 

,p *IT,)( x1),p *(T,I( x 2) ••• ,p *ITn){ x
n

). 

Clearly this carries a representation ofU(m) equivalent to 
the n-fold tensor product ofU(m) and following Ref. 4 we 
may decompose it into irreducible components using Young 
symmetrizers 8E Sn where Sn is implemented on X as 

y(,p *[r,){ x\) ... ,p *(TnJ( x
n

)) 

= ,p *(T,){ x
r1IJ

),p *(T,J{ x 11ZJ ) ••• ,p *ITnJ{ x
r1

"J)' (4.13) 

Comparing this implementation with that of the above 
theorem and using (4.12) we conclude that for every Young 
symmetrizer 8E Sn which has no more than m rows there 
exists an XEX (X = /(rl>r2 , ... ,r. )frdlrzJ··· [r. 1) such that 

8{X) =1=0. 

Furthermore 

b(X)I> EHR , 

as can be seen from the proof of the theorem above. 
To show that all Young tableau occur, let 9 be an ordi­

nary symmetrizer. Then it is not hard to show, using (4.10), 
(4.5), and (4.6) that 
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P =9(¢*( xtl· .. ¢*( xm)) 

= €- c det (S)2: sign(A)(,6 *(A(O)}( xtl •.. (,6 *(A{m - 1))( Xm )#0, 
A(il 

where we are using the notation following (4.10) with 
m; = m. As was noted in Ref. 4 we have for g E U(m) 

ag(P) = (detg)-lp. (4.14) 

Now P corresponds to a single column Young tableau in the 
implementation of Sn in (4.13). By multiplying a suitable 
product of P 's by 8 (X) we obtain a U(m) tensor corresponding 
to an arbitrary Young tableau. We have not, however, pro­
duced all "physically relevant" U(m) tensors and in fact it is 
fairly easy to see that it is impossible to construct the meson 
singlet. This contrasts with the para-Fermi case where this is 
given by [¢*( xtl,¢( x 2)L. 

It is the view of this author that this "problem" may be 
solved with the introduction of reservoir states. These are 
vacuumlike states contained in the Fock space of the ex­
panded algebra. An example would be the state 
Ik) = aj(llb rllll) which clearly satisfies bilk) = aj Ik ) = 0 
(the aj* and b r being, respectively, particle and antiparticle 
creation operators). The author hopes to pursue these mat­
ters further in a future paper. 

5. COLOR SUPERALGEBRAS 

Rittenberg et al. 18 have considered a generalization of a 
graded Lie algebra which has the generalized Lie product 

(Xg,xp)=XgXp - ( - 1)Ig.t!IXpX g = e~,tt!xQ+P' 
- - - - (5.1) 

where the q and I! belong in general to an n-dimensional 
complex "grading" space and (q,{3) is a mapping which is 
required to satisfy various properties so that the symmetry of 
(5.1) is maintained and a generalized Jacobi relation is satis­
fied. The usual graded Lie algebra is obtained by considering 
the vector space Z2' Rittenberg, however, considered the 
more general vector space of Z, Ell Zs Ell ... Ell Z,. The rel­
evance to this paper of these algebras becomes apparent 
when one realizes that the ansatz operators of both the para­
Fermi and modular schemes form color superalgebras with 
grading spaces of Zz Ell Z2 Ell ···Zz and Zm Ell Zm Ell Z2' respec­
tively. The para-Fermi case has already been discussed by 
Rittenberg. For the modular case one uses the mapping 

(5.2) 

with aI' /31 E Zm' a Z' /32 E Zm and a 3, /33 E Z2 and sets, for 
example, 

Xla,.l,ll = bla,l, XI_a,._l.ll = b*la,), XIO.O.OI = 1, 

and all other elements equal to zero. 
In his paper Rittenberg claims that to every color super­

algebra with grading space Z2 Ell Z2 Ell ••• Ell Zz (n factors) and 
mapping (q,/3) = l:;a; /3; there corresponds an ordinary su­
peralgebra with identical structure constants. The corre­
spondence being given by 

Yg = rla'rZu'···rn un®Xg , (5.3) 

where the r are Clifford matrices of dimension 2V 

(n = 2v,2v + 1) which satisfy 
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r;rj + rjr; = 20ij 1. (5.4) 

The Lie bracket for the Yg is given by 

( y Y) = Y Y _ (_ l)~,ai'~iPiY Y 
g' t! g t! t! g' (5.5) 

Unfortunately the structure constants are not identical and a 
short calculation will show that 

e 'g +t! = ( - l)~i>jp,ajeg +t!. (5.6) g,t! g,t! 

(The e' being the Yq structure constants.) The lack of sym­
metry between /3 and q in the constant of proportionality 
indicates that o~e may not overcome this problem by insert­
ing some factor in the right-hand side of (5.3). 

The existence of the generalized Klein transformation 
(3.2) suggests that a generalization of the explicit correspon­
dence (5.3) should be possible. (An implicit generalization 
has been given by Scheunert. 19

) We shall confine ourselves 
here to the grading space Zm Ell Zm Ell Z2 and mapping (5.2) 
and simply remark that obvious extensions exist. The corre­
spondence is 

(5.7) 

where the E are the so-called generalized Clifford matrices 
(see for example, Ref. 20) which are m-dimensional and sa­
tisfy 

E,(,= 1. 

The Lie bracket for the Yg is 

(Yg,Yt!) = Yg Yt! - ( - l)a,p'Yt! Yg, 

and the new structure constants are given by 

e "! + t! = ~'P'e g + t! 
g, t! g,t! . 

(5.8) 

(5.9) 

(5.10) 

Finally, we note that the new structure constants in (5.10) 
and (5.6) mean that the ordinary graded Lie algebras Yg 
have the required symmetries in their Lie brackets and sa­
tisfy the usual Jacobi identities. 

6. CONCLUSIONS 

A comparison between modular quantization and the 
usual quantization with D(m) symmetry has shown that the 
theories differ in that modular quantization does not pro­
duce a meson singlet state. It does, however, produce all the 
U(m) states for baryons, the degeneracy with respect to the 
symmetry being greater than the para-Fermi theory but less 
than the usual quantization. It should be stressed that these 
conclusions depend on the condition (1.9) which selects out a 
particular Fock representation among many possibilities. 
Evidently other physical models may be constructed with 
other representations. This has in fact been done in the case 
of para-Fermi quantization by Bracken and Green. 21 

It appears that the color superalgebras provide the basis 
for the most fruitful generalization of the results presented in 
this paper. It would seem to this author that one cannot 
really consider the elements of these algebras as physical 
fields but one needs to consider linear transformations of 
same [such as that given by the Sylvester matrix in (1.10)]. 
This is to ensure that a suitable reduced algebra may be iden­
tified and a time ordering (see Ref. 6) defined. The usefulness 
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of the color superalgebras lies in the possibility of Klein 
transformations to ordinary Fermi fields. This allows us to 
examine whether the generalized quantizations correspond 
to any "usual" theory. In this light it is worth pointing out 
that the "non-Heisenl:-erg" PI-' given in (2.3), when trans­
formed to usual Fermi fields, involves the nonlocal u opera­
tor. This is a strong indication of its peculiarity. 

Finally it should be pointed out that the above discus­
sion could be easily altered to deal with Bose-like fields rath­
er than the Fermi-like fields considered. In this case the an­
satz algebra would be a color algebra (rather than 
superalgebra) with the grading space Zm Ell Zm . 
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An asymptotic expansion for the generalized quark statistical distribution function in which 
quarks are introduced into Chao-Yang statistics is derived. Mathematical properties of the 
function are also examined. 

PACS numbers: 14.80.0g 

I. INTRODUCTION 

The Chao-Yang statistics' was first introduced in 1974 
to determine the statistical charge distributions of nucleons 
and pions in "violent collisions." 

The well-known quark structure of hadrons was later 
incorporated into Chao-Yang statistics to give the so-called 
quark statistics. 2

-4 Such a scheme was strongly suggested by 
us because of our firm belief that quarks are the basic con­
stituents of hadrons. 

When two colliding systems impart violent impulse on 
each other either by transferring large transverse momen­
tum or arresting each other completely in a small region of 
space before disintegration the physical assumption in quark 
statistics is that the quarks of the colliding systems must 
participate fully together with the quark-antiquark pairs cre­
ated at short distances within the small central region. They 
are therefore asymptotically free and their mutual interac­
tions may be neglected. Using quark statistics, we are able to 
calculate the particle ratios and dihadron spectra in the final 
state of a violent hadron-hadron or hadron-nucleon colli­
sion. The results obtained are in good qualitative agreement 
with experiments. 

II. STATISTICAL DISTRIBUTION OF QUARKS 

Consider a collection of I quarks of n types q" q2, ... ,qn 
and their associated antiquarks ii" ii2, ... ,iin' We define nq , to 
be the number of q, quarks in the collection, and nq, ' nq,' nq, 
etc., are similarly defined. The quantum state of the collec­
tion is given by (m " m 2 , ••• ,mn ) which is equivalent to a state 
of m,q, quarks, m2q2 quarks, and so on. From these defini­
tions, we have 

n 

'" (n + n- ) = I £." ql ql (1 ) 
i= I 

and 

nq, - nq, = m i , i = 1,2, ... ,n. (2) 

As an illustration, the "quark quantum state" of 1r-P 
consisting of 2u quarks, 1 Ii quark, and 2d quarks is repre-
sented by (1,2,0, ... ,0). 

Let N ~,.m, ... m. be the number of possible ways of dis-
tributing (m" m2, ... ,mn) over a collection of I quarks. The 
generating function of N ~ •. ml ..... m. is defined as 

(3) 
m.,m1.···.m,. 

where Xj and l/Xi are variables for qj quark and ii; anti­
quark, respectively. In order to investigate the symmetry 
properties of the distribution function we have assumed 
equal probability for the creation of all kinds of quark-anti­
quark pairs in the central region. 

To obtain an explicit expression for N~ .. m, .... m.' we 
multiply both sides ofEq. (3) by 
(l/x7' + ') (l/x~' + ') ... (1/x~n + ') and perform the contour in­
tegral by means of Cauchy's integral formula. 

We obtain 

N 1 
m.,m 2 ,···.m,. 

(4) 

III. MATHEMATICAL PROPERTIES AND THE PHYSICAL 
IMPLICATIONS OF THE DISTRIBUTION FUNCTION 

(a) L N~ .. m, ..... m. = (2n)/. (5) 

Proof This follows by putting Xi = 1 in Eq. (3). It 
should be noted that the number of possible quark combina­
tions increase much faster than the exponential increase el

• 

(b) N~,.ml ..... mn is invariant under any permutation on 
the n symbols (m" m2, ... ,mn ). 

Proof This follows from the symmetry of Eq. (3) under 
interchange of the variables Xi'S. This implies that 
N ~,.m,..mn depends only on the number of quark-antiquark 
combinations but not on their ordering. 

(c) N ~,.ml •...• m. is invariant under any change of sign on 
the n symbols (ml' m2, ... ,mn ). 

Proof This follows from Eq. (3) which is symmetric un­
der the interchange of the variables Xi and l/xi. Physically 
this means that the number of possible quark combinations 
N ~ .. ml •...• mn depends only on the absolute differences between 
the quarks and the anti quarks of the same type. 
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(d) N~"m, .. m" = 0 if(1 + '2 i m i ) is odd. 
Proof On replacing Xi by - Xi in Eq. (3), we have 

( - I)' [ ~(Xi + :,)] I = m,.1:.m,,( - I ):i.,m'N ~"m, .... m" 

. X~IX';'··'X:" (6) 

Combining Eqs. (3) and (6), we obtain 

[( - 1)'+ :i.,m, - I ]N'm"m,. xm'xm' .. ·xm" = 0 .. ,m" I 2 n , 

and hence 

N~"m, .. m" = 0 if(1 + ~mi) is odd. 

(7) 

Proof This is immediate from the definition of 
N ~,.m, •. m" if we note that a collection of I quarks is obtained 
from a collection of I - I quarks by adding either a qi or ifi 
quark. 

(f) 
N'-I -N'-I 

rn.,rnl. .... ,m, ~ I, ... m" m •. m:, ... ,m, + I •... m" 

(8) 

Proof By differentiating Eq. (3) with respect to Xi' we 
obtain 

miN~ .. m2, ... ,ml, ... ,m" == I(N~~,'!12 ..... m, I ..... m" 

-N'--I ). 
m l .'n 2 ,· ••• m, -t I, .... fn" 

Similarly if we differentiate Eq. (3) with respect to mj , we will 
obtain the above ratio for m i over mj' 

IV. MODIFIED STATISTICAL DISTRIBUTION FUNCTION 
AND THE DEFINITION OF PROBABILITIES 

In Sec. III for simplicity we assumed that the quark 
combinations resulting from violent collision are indepen­
dent of the types of quarks involved in the reaction. This 
implies that for a fixed I, each of the states N~,.m".m" is 
equally probable. Now, in order to satisfy the experimental 
results that the production of strange hadrons is suppressed 
in non strange hadron-hadron collisions, the equation of the 
generating function may be modified as follows: 

ax+- = N { ( I)}' , ~, I Xi m,.1: .. ,m" m,.m, ..... m" 

(9) 

where ai's can be interpreted as the relative strength in pro­
ducing the ith type of quark among the n types. 

The probabilities of finding the individual quarks and 
antiquarks, respectively, are defined as follows: 

N'-I 
mpmt. •...• mi - I. ... ,m" 

P = q, N' m •• rnz,···.m" 

(10) 
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(II) 

These definitions can be easily generalized to a collection of 
k quarks . 

To obtain the particle ratios in terms of the distribution 
function N~"m, ... m.' we consider a violent collision of the 
hadron hI and h2 having quark states (P1,P2, ... ,Pn) and 
(ql' q2, .. ·Qn) and consisting of kl and k2 quarks, respectively . 
It is reasonable to assume that the probability of producing 
h I is proportional to 

N1-- k, 
m. - ppml. -. pt., .... m" - p" 

N 1 
ml'm1.···.m" 

( 12) 

and similarly the probability of producing h2 is proportional 
to 

(13) 
N 1 

m •. ml.···.m,. 

Hence the ratio of the two hadrons is 

(14) 

V. ASYMPTOTIC EXPANSION OF N/",.m",.m
n 

We shall now derive the asymptotic expansion for the 
modified distribution function N ~,.m,..m" by substituting 
Xj = ei

(}, into Eq. (9). We obtain 

N 1 
m.,m 2,···,»1" 

21 JTr JTr JTr n 1 n 
= --n dOl d02· .. dOn(IaicosOi)·IIcos(mjOj) 

(21T) - 71' - 71' - 71' i ~ I j ~ I 

2
1

171' iff i Tr 
1 = -;; dOl d02·.. dOn (Ia i cos Od ·IIcos(mAl, 

1T 0 0 0 i j 

( 15) 

if we made use of the fact that cosine is an even function and 
sine is an odd function. 

We can further split the integral into quadrant as 

171' dei = 171'12 dei + 1Tr/2d (1T - 0i) , 

and hence 

Chang eta/. 

(16) 
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Note that the products II cos(mjOj) in each term ofEq. (17) 
, 

are equal in magnitude except for a difference in sign. Fur­
I 

thermore, the summation (Laj cosO j ) is constructive for the 
j 

first and last terms ofEq. (17) only and for the other terms in 
which the summation bears opposite sign they are destruc­
tive. As 1-+ 00, the destructive terms are in orders of magni­
tude smaller than the constructive terms and we are there­
fore left with terms, i.e., 

lim fdO\ ... i""dOn = i1T/2dOli1T/2d02···i1T12dOn 

1_00 0+ f TI2
;(1T _ OI)l,,"/2d(1To- 02)"'i~/2d(1T _ On)' (IS) 

(19) 

The integrand can be expressed in series as follows: 

( 
m202 m404 ) 

IIcos(m,8;)=II1--'-' +-'-' - ... 
j j 2 24 

= 1 _ J...~m202 + _1_ ~m404 
2 "7 " 24 "7 ' , 

+ J... ~m2m20202 + "', 
8 ~ , J ' J 

and 

~acosO=A- J...~a02 + _1_~a04 
"7 " 2 "7" 24 "7' , 

__ 1_~a06+ ... 
no"7' I , 

where all at's> 0 and Laj = A. 
j 

Suppose 

(20) 

(21) 

?aj cos OJ = SeriesX·A exp [ - (lI2A )?ajO/], (22) 

so that on comparing with Eq. (21), we obtain 

Series X = 1 + [_1_ ~a04 _ _ 1_(~a.02)2] 
24A "7 I, SA 2 "7' , 

+ { __ 1_ ~a.06 __ 1_(~a02)3 
nOA "7 I I 24A 3 "7' I 

+ _1 (~ao4)(~a.o2)} + ... 4SA 2 "7 I I 7' J J 

= 1 + _1_2 I(Aa j - 3a~)Oi - ~ LajajO;OJ 
24A j SA '#j 

+ _1-3 I(15Aa~ - 30ai -A 2aj )0? 
nOA j 

1 ~ 002 il4 2 + --3 ~(Aajaj - jaj)ujOj 
4SA j#j 

1 ~ il2 2 2 - -- ~ aa.aku.O.O k + .... 
24A 3 i#j,tk , J ' J (23) 
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Using the finite integral for large I 

~ 1""/2 O;P exp( - a~7 I) dOi 

-A p(~)I/2 1·3·5···(2P - 1), 
2a j 1TI aff P 

(24) 

we can express the distribution function when (I + !.jm j) is 
even as 

I( A )n/2( ) - 112 N~"m, .... m. -2(2A) 21Tf I;Ia j ·Series Y, (25) 

where Series Yis a series having inverse powers of I. The new 
series can be evaluated by the product 

(Series X)I. II cos(m,Oj)' 
j 

and the preceding integral formula (24). 
The first term in Series Y is obviously equal to 1. The 

second term is 

_ J... A I m1 . J... + _1_ I 3(Aa j ~ 3a;) 12 
2 j a j I 24 j aj I 

_ .!.- I ajaj ~, 
S i#j ajaj I 

which is equal to 

_ J...(n 2 +2n+AL
4m;-I). 

Sf j aj 

(26) 

(27) 

where C;:, is the combinating function. 
Substituting these results into expression (25), we obtain 
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the asymptotic expansion of N ~,.m, ..... m. as 

2(2A )1(2~Jn/2(Ifaj) -1/2 

X{l- ~[n2+2n+AI4mf-l] 
SI j a j 

+~[16(I mf)2]+ L9-~Omf 
1281 j a j j a j 

1 
+I-

j#j a,a) 

_ I Smf + 2(n + 2)(n + 4) 
j#j a,a) A 

4m2 -1 XI_'-
i Q i 

+ ~ 2 (2Sn + 7SC~ + 76C~ + 24C~)] 

+ 0U3 )}. (2S) 

Having obtained the asymptotic expansion of N~,.m2 .. m.' 
we shall examine the ratio r, which is the probability of pro­
ducing hadron h I to the probability of producing hadron h2 
given by Eq. (14). We have 

N I - k , 
(m, - p,) •... ,(m, - P.l, ...• (m. - P.) 

NI-kh 
(m, - q,), ... ,(m, - q,), .,(m. - q.i 

r= (29) 

which can be expressed as 

r = (2A )(k. - k,) __ b 
(
/- k )n12 
I-k, 

1 + tl/(/- k,) + t2/(/- k,)2 + ... 
X 2 • 

1 + bl/(/- kb) + b2/(I- kb) + ... 
(30) 

where t l • f2' b l , b2 are the coefficients ofthe asymptotic ex­
pansion of the distribution function and can be obtained 
from Eq, (2S). 

The second factor ofEq. (30) is 

(
l-kb)nI2 n n 
-- = 1 + -(k, -kb)+ -2(k, -kb) 
1- k, 21 SI 

X [n(k, -kb)+2(kl +kb)] +... (31) 
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and the last factor can be simplified to 

1 fl - b l 1 [ 
+ -1- + (i k,t l - kbb l + f2 - b2 - (t l - btlb l ]. 

Hence the ratio becomes 

r= (2A )(kb-k,i{ 1 + +[; (k, - k b ) + (t l - bl)] 

1 [n2(k k 2 n 2 2 + (i 8 I - b) + 4(k I - k b) 

n 
+ -(k, - kb)(tl - bl ) + kltl - kbb\ 

2 
+ t2 - b2 - (t l - btlb l ] + ... }. (32) 

Note that 

tl-b
l
= -~L (m j -pjf-(mj -q,)2 (33) 

2 , a j 

and 

'A. Chao and C. N. Yang, Phys. Rev. D 9,2505 (1974). 
'CO K. Chew. H. B. Low, S. Y. La, and K. K. Phua,J. PhysicsG6, 17 (1980). 
'c. K. Chew, L. C. Chee, H. B. Low, and K. K. Phua, Phys. Rev. D 19, 3274 
(1979). 

4c. K. Chew. D. Kiang, and K. K. Phua, Phys. Rev. D 21, 2525 (1980). 
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This paper investigates the method of projection collocation using cubic B-spline approximants to 
solve singular integral equations arisin,g in scattering theory. Theoretical error bounds are 
provided for the approximation which give criteria for estimating the efficiency and convergence 
of the method. As numerical examples we solve the two-body K-matrix equation with a separable 
potential and the Reid ISO soft-core potential. 

P ACS numbers: 24.10. - i, 02.30.Rz, 25.10. + s, 02.60.Nm 

1. INTRODUCTION 

The aim of this paper is to investigate the method of 
projection collocation, with cubic B splines as basis func­
tions, to obtain approximate solutions of the singular inte­
gral equations that arise in scattering theory. 

It has been shown I that three-body scattering can be 
described by the solution of singular multidimensional inte­
gral equations. The numerical solution of these equations is 
known to be difficult and complicated. 

The present paper is devoted to a discussion of the nu­
merical solution of the simpler two-body scattering problem, 
but a straightforward application of the methods described 
here may also be used to obtain numerical solutions of the 
integral equations that describe three-body scattering. 

The general method of projection2
-

S has been used suc­
cessfully to obtain approximate solutions of the integral 
equations that describe few-body systems. Osborn6 investi­
gates the use of moment methods to obtain approximate so­
lutions of the singular two-body Lippmann-Schwinger 
equation. The use of splines and the Galerkin method to 
solve the corresponding homogeneous equation is described 
in Ref. 7. More recently Fiebig8 has advocated the use of 
splines to solve scattering and bound-state problems. Similar 
methods have been used to solve integral equations that de­
scribe the three-bOdy bound-state9 and scattering prob­
lem. 10, II In Ref. 11 use is made ofbicubic splines to construct 
an approximate kernel that is degenerate. It should be re­
marked that a collocation method with bicubic spline ap­
proximants has also been used to solve the three-body inte­
gral-differential equations for the bound state problem in 
configuration space. 12 

In this paper it will be shown how the use of splines as 
approximants to the solution of two-body integral equations 
yieldS an easily programmable method for solving the scat­
tering problem. An error analysis shows that this method is 
numerically stable. The method is also shown to be efficient 
provided that the fourth derivative of the scattering solution 
is sufficiently small. 

Section 2 gives a mathematical formulation of the meth-
0d, and provides error bounds for the approximation. Sec­
tion 3 shows how this method may be applied to scattering 
integral equations, and in Sec. 4 we give our numerical 
results. 

2. THEORY 

The method of projection for solving integral equations 
of the second kind2

,3 has not only proved successful but has 
enabled the theoretical investigators readily to provide error 
estimates for the solution, The particular subclass of meth­
ods of projection we employ is that of collocation with spline 
approximants, which in turn gives rise to the need for the 
evaluation of principal value integrals, The method used for 
evaluating these integrals is that of subtracting the singular­
ity and computing the resulting nonsingular integrals by 
means of Gaussian quadrature. 

The general problem, from which our physical problem 
is taken, is the solution of the operator equation 

(I - %)! = y , (2.1) 

where/. YEe (X), the space of continuous linear functionals 
defined on the compact set X; %, I are linear operators 
mapping C (X) into itself with I the identity operator. 

The essence of the projection method of solving this 
equation is first to choose a linear subspace S of C (X), with 
which to approximate/. and an appropriate bounded projec­
tionoperator PmappingC (X )onto(I - %)[S]. Theapproxi­
mate solution to our problem, using this projection, is the 
gES such that 

P (I - %)g = Py . (2.2) 

A general error analysis2 shows us that if % is bounded 
(I - .3Y)-1 exists, and 11% - P%II is bounded by 
11(1 - %)-111- 1, then 

II! - gll<II(I - P%)-IIIIII - Pili· (2.3) 

The particular problem we address is the solution of the 
integral equation 

I(s) - fK (s,t )/(t )dt = y(s), a<s<b, (2.4) 

We choose for our linear subspace S of C [a,b ] a finite­
dimensional space of cubic splines with a given set of knots. 
To be precise, let 1Tn be a partition of the interval [a,b] de­
fined by the knots a = tl < t2 < ···tn = b with mesh spacing 
hn = max{(t;+ I - t;):1<i<n}. On this partition together 
with the extended knots t_ 2 <,t_ l <,tO<,t l < ... <tn <tn+ I 

<,tn + 2 <,tn + 3, we can construct the cubic B splines 
{Bn;: i = O, ... ,n + 1}, EachBsplineBn; is a cubic spline hav-
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ing nonzero values over the interval (tj _ 2' tj + 2)' and the set 
of B splines form a basis for the (n + 2)-dimensional sub­
space of cubic splines for the partition 1Tn' 

Given n + 2 distinct points SO""'Sn + I in [a,b ] and any 
function/eC [a,b], we can define the operatorPn mapping 
C [a,b ] into S such that 

Pn/(Sj) =/(Sj)' i = O, ... ,n + 1. 

From the properties of cubic splines we have that 

Pn (a/ + f3g) = aPJ + f3Png , (2.5) 

P;.J= Pn (Pn if)) = P .I; (2.6) 

hence Pn is a projection operator. 
Using the B-spline basis we letP .I be defined by 

n+1 
PJ = L aniBni ; (2.7) 

i=O 

then 
n+1 

Pn (I - %)/ = L anj(I - %)Bnj 
i=O 

and the coefficients I ani I are found from the system oflin­
ear equations 

n+1 L anj [(I - %)Bnj] ISj = y(s) j = O, ... ,n + 1, (2.8) 
i=O 

where Is denotes the value of the operator at the point s. 
Owing to the identity term, the linear equations so 

formed are well-conditioned integral equations ofthe second 
kind. 

The method described here is useful because error esti­
mates are available. 

From De Boor and Schwartz3 we have the following 
inequality: ifjeC 4[a,b], then 

II/ - P JII<JhIIf""llh ~ , (2.9) 

and in particular, if the collocation points of the set I Sj I are 
the points t l , (t l + t2)/2, t2, ... ,tn _ I' (tn _ I + tn )/2, tn' then 

11(1 - Pn%)-III<1 + Hhnlh! )2, (2.10) 

where h ~ = mini (tj+ I - tj):l<i<n - 11 . 
Hence using the equation given above, if g is our ap­

proximate solution then an upper bound for the error is giv­
en by 

II/ - gll«l + !(hnlh !fHrl4IIf''''llh~) . (2.11) 

and a rate of convergence of 0 (h ~ ) results. 
We note here that the collocation process described 

above does not prescribe any form to the kernel. However, 
the coefficients of the linear equations involve the integrals 

fK (s,t )Bnj(t )dt, i = O, ... ,n + 1, (2.12) 

and to effect a numerically stable algorithm these integrals 
need to be evaluated accurately. 

In scattering problems we assume the kernel K is singu­
lar and of the principal value type. The evaluation of the 
moment integrals is best performed using the method of sub­
traction of the singularity. An error estimate for the evalua­
tion of this integral using the method of subtraction and a 
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quadrature method of at least second order can be derived as 
in Ref. 13. Thus if 

K(·,t) = G(·,t )I(t - u). (2.13) 

then for a<a<u<f3<b we have an error estimate for the nu­
merical solution ofEq. (2.12) of the form 

W/720)[F""(f3) - F""(a)] + 0(06
), (2.14) 

where 8 is the step length used in the integration and 

F"" = 4G ' B ;/ + 6G "B ;j + 4G "'B ~j + G "" B nj . 
(2.15) 

As shown by Sloan4 we can improve on the approxima­
tion go of/which interpolates the points 
{(Sj,go(sd):i = 0 •...• n + I} by constructing the sequence of 
functions I gj I eC [a,b ] from 

gj + I (s) = y(s) + f K (s,t )gj(t )dt . (2.16) 

As we shall see later, this procedure, which we refer to 
as the iterative improvement. has the effect of smoothing out 
oscillations in the approximation go. Note that for all 
i,gj(sj) = go(Sj ).j = 0, ... , n + 1; hence this smoothing oper­
ation does not change the approximation at the collocation 
points. 

3. SCATTERING EQUATIONS 

We now apply the methoq described in Sec. 2 to a phys­
ical problem. viz., the solution of the principal-value integral 
equations that describe two-body scattering. The partial­
wave equation for the half-shell K matrix M (p,k ) has the 
form 

2 L'" M(p,k) = v(p,k) - - v(p,p') 
1T 0 

'2d ' 
X p~ -Pk 2 M(p',k), pe[O, (Xl] (3.1) 

where v( p,p') is the potential and k is the on-shell momen­
tum. The integral in Eq. (3.1) is evaluated with respect to the 
principal value prescription. The solution M (p,k ) is a real­
valued function and can be expressed in terms of the phase 
shift 0 (k ) by 

M(k,k) = - [kcot8(k)J-l. (3.2) 

It is convenient to map the integral in Eq. (3,1) onto a 
finite interval. To do this we introduce the variable 
xe[ - 1, + 1] by the mapping 

(
1 +x) p(x)='I] -- , 
I-x 

(3.3) 

where 'I] is a constant scale parameter, Equation (3.1) can 
now be written in the form 

M (p(x),k ) = v( p(x),k ) 

2 II ( 1 +X')2 - 2'1]3 -;: _ I v( pIx), p'(x')) 1 _ x' 

M(p'(x'),k )dx' 
X ['1]2(1 +x')2_k2(l_X')2] , 

XE[ - 1, + 1] . (3.4) 
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Let M n be the spline approximation P n M to M given by 
n+l 

Mn(p(x),k)= Iani(k)Bni(x). (3.5) 
;=0 

The linear system of equations formed is 
n + I I [Bni(Xj) + Ini(pj,k )]dni(k) = v(pj,k), j = O, ... ,n + 1 , 
;=0 

(3.6) 

wherexj,j = O, ... ,n + l,arethen + 2 collocation points and 
Pj p(Xj) and I ni (xj,k ) are moment integrals formed from the 
kernel ofEq. (3.1) convoluted with the cubic B spline, viz., 

Ini(pj,k) = 21/3 ! J~ I V(Pj'p(x)) C ~ :r 
B"i(X)dx 

x [1/2(1 + xf _ k 2(1 _ X)2] , 

iJ = O, ... ,n + 1 . (3.7) 
The choice of 1/ = k leads to a pole in the integrand at 

the on-shell value x = 0. Thus 

k fl (1 +X)2 
Ini(Pj,k) = -;; _ I v( Pj'p(x)) 1 _ x 

XBni(x) dx, i,} = O, ... ,n + 1 . 
x 

(3.8) 

We therefore see that by applying the projection coHo­
cation method to the integral equation in Eq. (3.1) we have 
reduced the problem of solving an integral equation to that 
of setting up a solvable linear system. Moreover, by expand­
ing the K matrix in the cubic B-spline basis the moment 
integrals are restricted to be a convolution of the kernel with 
a function no more oscillatory than a cubic polynomial. 

Using one iteration of the iterative improvement 
scheme we obtain a new approximation Aln given by the 
formula 

Mn(p(x),k) = v(p(x),k)-
n+1 I ani(k )Ini(p(x),k), 
i=O 

(3.9) 

where I ni ( p(x),k ) is given by Eq. (3.7) or (3.8) withp(x) re­
placing the discrete values Pj' At pIx) = Pj the approxima­
tion M" coincides with the approximation Mn, i.e., 

(3.10) 

It follows that Mn provides no additional information 
at these points. However, alongp(x):;6 Pj the approximation 
M" differs from the cubic B-spline interpolate Mn . 

4. NUMERICAL RESULTS 

In the formulation of the computer procedure to test 
the validity of this method, particular attention was paid to 
numerically stable methods used in the subprocedures. 

The evaluation of the B-splines were performed using 
the iterative technique of Cox 14 given by 

(x - Xi_ m) B~7-=-II)(X) + (x; - x) B~,,:-I)(X) 
B ~7)(x) = ~--=--=-:..:...-.....:.:.:.--.:~.:....----.:....-=----.:....-....:::...-....:....;... 

Xi -Xi_m 

where m is the order of the spline. For the cubic spline, 

(4.1) 

m = 4. This procedure is both computationally fast and ac-
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curate, as the analysis in Ref. 14 shows. 
Having this stable method of calculating the B-spline 

basis we need to evaluate the moments In; which are of the 
principal value type. Different methods were compared in 
Ref. 13, the conclusion being that use of the method of sub­
traction of the singularity gave better results. In our pro­
gram, we used a Gauss-Legendre quadrature formula with 
error analysis as described above. The actual moments were 
calculated over the intervals [ti + I ,ti ] and summed. It is to 
be noted that over each interval only four of the cubic B 
splines are nonzero so that each B spline needs to be evaluat­
ed only once at the quadrature points, which contributes to 
computational efficiency. 

The linear equations formed were solved using an LU 
decomposition, a method that is satisfactory because the ma­
trix of coefficients is well conditioned. 

All computations were performed on a CDC Cyber 
with a 48-bit mantissa. 

To illustrate the properties of our method we first con­
sidered an equation for which a simple analytic solution ex­
ists, viz., a one-term separable potential of the Yamaguchi 
type. 15 In momentum space this potential has the form 

v( p,p') = 4 I( p2 + (3 2)( p,2 + (3 2) . (4.2) 

We shaH assume that this system can support a bound 
state, i.e., that the parameter 4 is fixed by ensuring that the K 
matrix hasa pole at the binding energy k 2 = - €in Eq. (3.1). 
Over the scattering region, k>O, the half-off-shell K matrix 
is given by 

(
k
2+(32)[ 

M(p,k) = p2 +(32 -(3 + 

(k 2 + (3 2)2 ] - I 

+ 2' 2(3(/3 + a) 
(4.3) 

where a = (€)1/2. Thus we have a simple analytical form for 
the half-off-shell K matrix against which we can test our 
method. 

We computed our results using the constants 
(3 = 1.44401 fm- I and € = 0.053695 fm-2. These param­
eters were chosen so that the Yamaguchi potential will ap­
proximately describe low energy neutron-proton scattering 
in the s-wave spin-triplet channel. For each calculation we 
used evenly spaced knots and coHocation points as indicated 
in our error analysis. 

TABLE I. Convergence of the projection collocation method for a separa­
ble potential at scattering threshold. Scattering length a is measured in fm. 

n a=M(O,O) 

Exact - 5.3800 
3 - 5.5333 
4 - 5.6077 
5 - 5.4025 
6 - 5.3777 
7 - 5.3782 
8 - 5.3791 
9 - 5.3795 

10 - 5.3797 
15 - 5.3800 
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We first calculated the scattering length for this poten­
tial, and the results are given in Table I. We note the fast 
convergence to the correct value of a = - 5.3800 fm. 

We next considered the solution at a scattering energy 
of k 2 = I fm - 2. In Fig. 1 we graph this solution over the 
interval [ - 1,1]. Figure 2 illustrates the difference between 
the exact solution for the K matrix and its value when calcu­
lated by our procedure for various numbers of knots. As can 
be seen, the error decreases rapidly as the number of knots is 
increased. Using iterative improvement once, we get an ap­
proximation Mn given by Eq. (3.9). In practice this approxi­
mation requires little additional computation as it requires 
only the evaluation of the moment integrals 
1,,;( p,k ),i = O, ... ,n + I, at the interpolation pointp. To com­
pute these integrals we use the recursion relation given in the 
Appendix. In our Fig. 2 we also graph the result of iterative 
improvement for four knots. We note how the error has been 
smoothed out, but passes through the interpolation points 
given by our original collocation points. 

To show the convergence properties of our procedure 
we tabulate, see Table II, the Locc [ - I, I] or Tchebysheff 
error norm. For a functionf(x),xE[ - I, I], the Tchebysheff 
norm is defined by II f II = max _ I ,'.x, I I f(x) I· The first col­
umn gives the error for the procedure for various different 
knot spacings, column 2, the error after one iteration of iter a­
tive improvement. For this particular potential we can also 
calculate the theoretical error bound given in our analysis, 
which for k 2 = 1 fm -2 is 

! 
.!': 
..., 
.i 
~ 

11M" - M II <;;;0.4333 (_2_)4. 
n-I 

o 

-1.0 

- 2.0 L--__ --' ___ --'-___ --'--__ ----' 

-1.0 o 1.0 

( 
P-I) 

X = pTI 

(4.4) 

FIG. I. Exact K matrix given by Eq. (4.3) at a scattering energy of k 2 = I 
fm- 2

. 
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0.06 

0.04 

.!': 

.>< 

c: i 0.02 

I 

o 

-0.02 
-1.0 o +1.0 

( 
P-I ) 

X= pTI 

FIG. 2. Approximate K matrix obtained using the separable potential. Er­
ror function Mn fp,k ) - M fp,k ) for the cubic B-spline interpolate with n 
knots. The - curve is for n = 4, the ---- curve for n = 6, and the .... curve for 
n = 8. The -x-x curve is the result of using the iterative improvement, 
where 0 denotes the position of the knots. 

In column 3 of Table II the value for this error bound is 
given. 

We first note that, as column 1 shows, the rate of con­
vergence for our procedure is of order h 4. Column 2 shows 
this rate of convergence also and a consistently smaller error 
for each value of n. Finally, as predicted by the theoretical 
analysis, each of these errors is smaller than the theoretical 
error bound given in column 3. 

The results we have shown so far have been used to test 
the method against a problem for which an exact solution is 
known. We next consider the solution of a more complicated 
system . 

To this end we carried out the numerical calculation 
with the Reid ISO soft-core potential. 16 In momentum space 

TABLE II. Convergence of the Tchebysheffnorm at a scattering energy 
ofk 2 = I fm-2. 

n liMn-Mil liMn-Mil Bound 

4 0.57\ - I) 0.29( - 1) 0.86\ -I) 

6 0.58( - 2) 0.90( - 3) 0.11(-1) 

8 0.93( - 3) 0.29( - 3) 0.29( - 2) 

10 0.29( - 3) 0.95( - 4) O.ll( - 2) 

12 0.20( - 3) OAI( - 4) 0.47\ - 3) 

16 0.48( -4) 0.11(-4) 0.14( - 3) 

24 0.71( - 5) 0.20( - 5) 0.25( - 4) 

32 0.16( - 5) 0.58( - 6) 0.7S( - 5) 
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-0.5 
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-1.0 o· +1.0 

( 
P- I ) 

X= P +1 

FIG. 3. K matrix for the Reid 'So soft-core potential at a scattering energy of 
E'ab = 48 MeV. 

this potential has the form 

( /) = _I _ ~ V In [( P + p')2 + Il/ ] 
v P,P 4 / ~ I / 0 2' 

I-tJlP i~1 (p-P)-+Ili 
(4.5) 

wherelll = 0.7 fm~I'1l2 = 41l1,1l3 = 71ll> VI = - 10.463 
MeV fm~3, V2 = - 1650.6 MeV fm~3, and V3 = 6484.2 
MeV fm ~". To obtain a reference solution we used themeth­
od of Haftel and Tabakin 17 to solve Eq. (3.1). 

Figure 3 illustrates the reference solution at a labora­
tory scattering energy of E1ab = 48 MeV. This solution ex­
hibits a much more complicated structure than our previous 
example, and therefore provides a more stringent test of our 
method than the system illustrated in Fig. 1. 

Since we do not have an analytical form for the moment 
integrals, we have to evaluate these integrals by numerical 
quadrature. We partition the region of integration according 
to the mesh spacing 1Tn , i.e., we write 

n -- I 

Ini(PJ,k) = I I~}(PJ,k) (4.6) 
/~ I 

and evaluate the integrals 

(I) _ k iX

" I (1 +X)2 dx I n;(PJ,k) - - v(PJ'p(x)) -- Bni(x) -. 
1T x/ 1 - x x 

(4.7) 

Of course only integrals over the interval [Xi ~ 2 ,Xi + 2 ] 

will contribute to the sum in Eq. (4.6). In the case when 
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0.5 

c: 

---------..... --
o .................................. '.' 

c:: 
~ 

• -0.5 

-1.0 o 

( 
P - I ) 

X= i>+I 

tl.O 

FIG. 4. Approximate K matrix obtained using the Reid 'So soft-core poten­
tial. Error function M. (P,k) - M (p,k ) for the cubic B-spline interpolate 

with n knots. The - curve is for n = 4, the ---- curve for n = 8, and the .... 
curve for n = 16. Knots are evenly spaced over the interval [ - 1, + I]. 

Oe[x/,x/ + I ], the integral in Eq. (4.7) is evaluated with re­
spect to the principal value prescription with error analysis 
as given above. Using the method of subtracting the singu­
larity, we write 

I~}(PJ,k ) 

k (XI' I [ (1 + X)2 
= -; L v(Pj'p(x)) I - x 

I 

(4.8) 

The integral is now replaced by a standard Gauss~Le­
gendre quadrature formula. 

Figure 4 illustrates the difference between the approxi­
mate spline solution Mn and the reference solution of Eq. 
(3.1). The knots are evenly spaced over the interval 
[-1,+1]. 

An important practical consideration in applying this 
spline approximant is the correct positioning of the knots. 
We do not attempt a detailed analysis of this problem in the 
present paper; however, it is interesting to modify the mesh 
spacing and then solve the system in Fig. 3 with a different 
choice of knots. For this purpose we choose the knot posi­
tions as Clenshaw-Curtis points over the interval 
[ - 1, + 1], i.e., the knots are given by the formula 

(i - 1)1T 
- cos , 

n-l 
i = 1, ... ,n. (4.9) 
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FIG. 5. Same as in Fig. 4 but with the knots spaced along Clenshaw­
Curtis points. 

Figure S illustrates the difference between the approximate 
spline solution M" and the reference solution. Although the 
rate of convergence is found to be similar to that of the evenly 
spaced knots, the choice of knot positions is seen to signifi­
cantly influence the approximate solution. 

It should be remarked that in any practical application 
of this method it is advisable to concentrate the knots in a 
region where the scattering solution has the most structure, 
and in this way one may hope to optimize the accuracy of the 
solution for a given number of knots. 

These results demonstrate that the projection colloca­
tion method with spline approximants is a practical and nu­
merically stable procedure for solving the integral equations 
arising in scattering theory. As shown by the error analysis 
the approximate solution can be found to arbitrary accuracy. 
In the test problems that we have considered, the method has 
demonstrated that accurate solutions can be obtained with 
only a small number of knots and hence small linear systems. 

APPENDIX 

In this Appendix we evaluate the moment integrals 

I,,;(p,k) 

A !5:..- II (I + X)2 Bn;(x) dx , 
p2 + f3 1 1T _ I k 2( I + X)2 + f3 2( I - X)2 x 

i=O, ... ,n + I. (AI) 

We write 

(A2) 
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where 

h,,;(k) = 1Tl II I (xl + 2 + x) B,,;(x) __ d_x_--:- , 
1 + a(k)x + Xl 

(A3) 

(A4) 

To simplify matters we shall assume a partition 1T,,: 

- I <;x I < X 2 < ... < x" <; + I of uniformly spaced knots. 
Consider the interval between two adjacent knots [x;,x; + I] 
with spacing h = (x; + I - x;). The four cubic B splines over 
this interval are 

B",(x) = _1_ ± b,.rxr, 1= i - I, ... ,i + 2 (AS) 
24h 4 r- 0 

where coefficients b,.r are defined with the knots 
x; 2' x; I , ... , X;" .' by 

b; 1.0 = x;'] I' b; _ 1.1 = - 3x~ + I' 

b; _ 1.2 = 3x; t I' b; u = - I , 

b;.o = - (x; 2X~+ I +X;X~+2 +x; 2X; t IX;+2)' 

b,.1 =X~II +X~t2+X;_2X;+1 +2X,X;12 

+ x; _ I x; + I + x; _ I x; + 2 + X;I I x; t 2 , 

b,.2 = -(x; 2 +X;_I +X; :+-3x;" I +3X;+2)' 

bi,3 = 3, 

b; 11.0 = X;_ IX;X;+ 2 + X~_ IX;+ I + Xl
;X;t.1 , 

b;II,1 = -(X~_ I +X; IX; +2x; IX;] I +X;_I X;+2 

+ X7 + XiX; + 2 + 2x;x; I .,) , 

b; I 1.2 = 3x; I + 3x; + X; I I + X; ] 2 + X; + .1 , 

b, t U = - 3, 

b;+2.0 = -xi, b;+2,1 = 3x~, 

b;+2.2 = - 3x;, b;+2,] = I . (A6) 

After substituting Eq. (AS) into Eq. (A3) we obtain 

I 4 I iX' + I 

h",(k) = 24h 4 r~I.. I Cl,r -; X 

XXr dx 0' l=i-I, ... ,i+2, (A7) 
1+ a(R)x + x-

where 

CI. I = b,.D' CI,D = 2bl,D + bl.1 ' 

Ciol = bloo + 2bl.1 + bl,2' CI,2 = bl.1 + 2bl,2 + b l,] , 

Cu = bl.2 + 2b, . .1' C'.4 = bl..1 . (A8) 

We now write Eq. (A7) as the sum 

I 4 
hl/,(k) = --4 I cl,rgr(k), 1= i - I, ... ,i + 2, 

24h r~ I 

(A9) 

where 

I IX, 0 I dx 
g (k) = - xr . 

r 1T x, I + ark )x + X2 
(AlO) 

To determine the integrals in Eq. (AlO), reference can be 
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made to standard tables of integrals. 18 We find that 

g - I (k) = 2~ [InC + a(k~h + h 2) - go(k)] , (All) 

go(k) = ~ (F + 13 2) arctan [( k 2 + 132 )(!a(k) + h I] , 
1T 2kf3 2kf3 

and for r> 1,gr is given by the recurrence relation 

1 h r 
gr(k) = -- - a(k )gr-l (k) -gr_2(k). 

1T r 

(AI2) 

(A13) 
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The author suggests a refinement of the Thomas-Fermi approximation for the ground state 
energy EN for an N electron atom. It is known that EN can be written asymptotically as N- 00 as 
EN ~aN7/3, where a is given by Thomas-Fermi theory. It has been further conjectured that this 
asymptotic formula may be refined to EN ~aN7/3 + /3N o/3 + yN5/3. Suggestions for the 
contributions to/3N 6/3 and yN 5/3 have been made by Dirac and Von Weizsacker. Here the author 
uses known results on short-time asymptotics for diffusion equations to obtain a refinement of the 
Thomas-Fermi approximation which includes the Dirac and Von Weizsacker corrections. He 
also obtains new terms. These are related to the scalar curvature of the Jacobi metric 
corresponding to the Thomas-Fermi potential. 

PACS numbers: 31.20.Lr 

1. INTRODUCTION 

We are concerned with finding approximations to the 
ground state energy for an N-electron atom where N is a 
large integer. 

Suppose there are k nuclei with positive charges Zi 
fixed at points RiEIR3

, respectively, 1 <i<k. The total poten­
tial at a point xEIR3 due to the nuclei is - V(x), where 

k Z 
V(x) = I l • 

i~1 Ix-Ril 
(1.1) 

Next we introduce N electrons, each with charge - 1 and 
mass m, moving in the field of the potential - V(x). Let Xi 
EIR3 be the position of the ith electron and ai = ± 1 be its 
spin, 1 <i<N. Then the N electron wave function I/; may be 
written as 1/;-I/;(xl, ... ,XN; al, ... ,aN), where I/;EL 2 (1R3N; (;2N). 
Let:JiP N be the Hilbert space of all such I/; which are antisym­
metric in the (xi> a i ), 1 <i<N. By Pauli exclusion:JiP N is the 
state space for the N electron system. The corresponding 
Hamiltonian H N is given by 

N N 

HN = -h2(8~m)-1 I.::1i - I V(xi ) 
i= I i= I 

N 

+ I IXi -xjl-
I
, (1.2) 

i<j= I 

with h being Planck's constant and.::1 i the Laplacian in thexi 
variable, 1 <i<N. If ( , ) denotes the inner product on 7r N 
then the ground state energy EN for the N electron system is 

EN = inf{(I/;, HNI/;): I/;E:JiPN, 111/;11 = I}. (1.3) 

One method of approximating EN is to limit the class of 
functions ¢E:JiP N over which one minimizes in (1.3). Thus by 
restricting I/; to antisymmetric products of single-particle 
wave functions I/;I(X 1, al), ... ,I/;N(XN, aN)' one obtains Har­
tree-Fock theory. 1 If 1/;1, ... ,I/;NE:JiP1 form an orthonormal set 
of real functions and ¢E:JiP N is the corresponding N electron 
wave function then (1/;, HNI/;) = CHF(I/;I, ... ,I/;N)' where 

CHF = K + A + R + Ex. (1.4) 

The kinetic energy K is given by 

K(I/;I,···,I/;N) = h 2(8~m)-litl(7f:± IIJVl/;i(X, aWdx. (1.5) 

The other terms on the right in (1.4) can be expressed as 
integrals of the two-body density pIx, a; y, a'), where 

N 

p(x, a; y, a') = I l/;i(X, a)l/;i(y' a');x, YEIR3, a, a' = ± 1. 
i= I 

( 1.6) 

Thus lettingp(x) be the one-body density, 

pIx) = I p(x, a; x, a), (1.7) 
a= ± 1 

the potential energy A due to nuclear attraction is 

A (p, V) = - Ip(x)V(X)dx. (1.8) 

The potential energy R due to electron repulsion is 

R (p) = ~ ( ( p(x)p(y) dx dy. (1.9) 
2 JII ,JII , Ix - yl 

The nonclassical exchange energy Ex is 

Ex(I/;I,···,l/J,v) 

- +CT.d~ ± 11.1, [P(xi:~:la'W dx dy. (1.10) 

The Hartree-Fock theory then yields the approximate value 
EN(HF) for the ground state energy, where 

E,v(HF) = inf{cHF(l/JI,···,l/JN):l/;iE:JiP1, (I/;i' I/;j) = Di)' 
(1.11) 

Evidently EN <EN(HF). 
As a further approximation one tries to express the ki­

netic and exchange energies in terms of the one-body density 
pIx) alone. Hence, since A and R are already expressed in 
terms of pIx) the total energy, CHF is a functional of pIx) 
alone. To approximate E,v one then has just to minimize cHF 
over all functions p(x) such that 

p(x»O, xE1R3
, (p(x)dx = N. (1.12) 

JIl' 
To approximate the kinetic energy in terms ofp(x) let us 

think of pIx) as being a fixed function satisfying (1.12) and 
regard (1.7) as a constraint on the wave functions I/;I, ... ,I/;N" 
Let K min (p) be the minimum kinetic energy (1.5) subject to 
the constraint (1. 7). Then if we assume following Thomas 
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and Fermi2 that a volume h 3 in the classical phase space can 
accomodate exactly two electrons we find for K min (p) the 
value 

(1.13) 

with c given by 

c = h 2(2m)-132/3(81T)-2/3. (1.14) 

To approximate the exchange energy in terms of pix) 
one needs to express the two-body density (1.6) approximate­
ly in terms of pix). Dirac3 achieved this by using a formal 
analogy between classical observables and quantum obser­
vables. His value for the two-body density p(x,u; y,u') is 

pix, u; y, u') = ~p(t)g(217]1(31T2p(t))1/3)8<7a" (1.15) 

where t = (x + y)l2, 7] = (x - y)l2, 8<7<7' = 0, 1 according as 
u#u' or u = u', respectively. The functiong(z) is defined by 

g(z) = z-3[sin z - z cosz]. (1.16) 

Substituting (1.15) into (1.10) one obtains the exchange ener­
gy in terms of p(x) as 

Ex = - 34/31T-1/34-ILf(X)4/3dX. (1.17) 

It was not until recent years that the nature of the ap­
proximations (1.13) and (1.17) for kinetic and exchange ener­
gies was understood. In Ref. 4 it is shown that K min (p) with a 
different value of the constant c is a lower bound for kinetic 
energy. Lieb and Oxford prove in Ref. 5 that the Dirac ener­
gy (1.17), again with a different constant, is a lower bound for 
exchange energy. Here we are more concerned with the re­
sults of Ref. 2 where it is shown that kinetic energy converges 
in a certain asymptotic sense to Kmin (p) with the constant c 
of (1.14) as the number of electrons N-+oo. To explain this 
we consider the Thomas-Fermi energy €TF (p, V) defined by 

€TF(p, V) = Kmin(p) +A (p, V) + R (p), (1.18) 

where A (p, V) and R (p) are given by (1.8) and (1.9), respec­
tively. The corresponding minimum energy for the A elec­
tron system, €,dV), is 

€,dV) = inf{€TF(p,V): 

p(x»O, pEL 5/3(R3), Lp(X)dX = A }. (1.19) 

It is known2 that there is a unique minimizingp for (1.19) 
provided 

k 

A< IZj =z. 
;= I 

The minimizing pix) satisfies the Euler equation 

where cPp(x) is given by 

cPp(x) = V(x) - ( ~dy, 
JR' Ix -yl 

(1.20) 

(1.21) 

(1.22) 

and cPo is a non-negative constant. Thus - cPp(x) is the total 
electrostatic potential at x due to nuclei and electrons. The 
constant - cPo may be interpreted as the maximum energy of 
an electron in the system. LetPTF (x) be the minimizing func-
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tion for (1.19), and for N> 1 let VN(x) be 

VN(x) = N4/3V(N 1/3X ). 

Then N 2pTF(N 1/3X ) minimizes €TF(P, VN) subject to 

r p(x)dx = AN. 
JR' 

It follows that 

€,jN(VN) = N 7/3€,j (V). 

(1.23) 

(1.24) 

(1.25) 

Next let Em( VN ) be the ground state energy (1.3) for the AN 
electron system with nuclear potential - VN • It is known2 

that 

E,jN(VN) =N7/3€,j(V) +O(N7/3), N-+oo. (1.26) 

Hence the Thomas-Fermi energy approximates the quan­
tum mechanical energy in a definite asymptotic sense. Note 
that if k = 1, A = Z = 1, then E ,jN(V N) is the minimum ener­
gy of an N electron atom. 

It has been conjectured, based on calculations for the 
hydrogenic atom,6 that the asymptotic formula (1.26) may be 
refined to 

E,jN(VN) = N 7i3€,j (V) + aN 6
/
3 + /3N5/3 + a(N5/3), 

(1.27) 

Thus on substitutingp(x) = N 2pTF(N 1/3X ) into (1.17) we see 
that the exchange energy should make a contribution to /3. 
Von Weizsacker7 argued that kinetic energy also makes a 
contribution to /3 by suggesting that K can be written more 
accurately in terms of pix) as 

K = Kmin(P) + Cw ( (V pl/2)2dx, (1.28) 
JR' 

where C w is a positive constant. The actual value of the 
constant C w seems to be in some doubt. 8 If we substitute 
pix) = N 2pTF(N 1/3X ) into (1.28) then it is easy to see that the 
Von Weizsacker term is order N 5

/
3 provided 

r (V p~ifdx < 00. (1.29) 
JR' 

The aN 6
/
3 term was first suggested by Scott,9 who claimed 

that a should have the same value as for the hydrogenic atom 
since the N 6

/
3 correction is caused by the singularities of the 

potential (1.1). Since the density PTF(X) corresponding to 
(1.1) satisfiesPTF(x)-(Z;lclx - Rjl)3/2 asx-+R j, l<i<k, 
the integral (1.29) is not finite. Therefore we might expect the 
Von Weizsacker term to make a contribution to a as well as 
(3. This has been shown to be the case by Lieb.1O 

In this paper we intend to pursue Dirac's idea of asso­
ciating a two-body density with a one-body density function 
pix). Then this two-body density will be used to calculate the 
total electronic energy in terms of pix). Our starting point is 
the Thomas-Fermi equation (1.21). Classically an electron 
in the system moves under the potential- cPp(x). Hence, ifg 
is the Euclidean metric in R3, an electron with maximum 
energy moves along a geodesic in the Jacobi metric 
[cPp(x) - cPo]g. From (1.21) this metric isjustp(x)2/3g. Our 
idea is to choose the eigenfunctions of the Laplace operator 
on R3 in the metric p(Xf/3g to form the two-body density 
associated with pix). 
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Letp(x) be a suitably smooth function which is positive 
for all xeR3 and such that 

if(X)dX=N. (1.30) 

We regard R3 as a Riemannian manifold M with metric 
p(X)2/3g. Hence the Laplace operator Q on M is given by 

- Q = p(X)-IV'(P(x) 1/3V). (1.31) 

We assume that Q is essentially self-adjoint on M with pure 
point spectrum. Then Q has real eigenvalues Aj,j = 1, 
2, ... ,with 0 <AI <A2<A3< ... and corresponding real eigen-
functions I,6j (x),j = 1, 2, .... If N is an even integer we define a 
set of functions tfl, ... ,tfNE!Jr1 by 

tfj(x, 0') = p(X)1/2I,6j(X)D". I' 

tfH N/2(X, 0') =p(X)IIZl,6j(X)D". -I' l<j<N /2. (1.32) 

Since 1,61'" .,1,6 N 12 form an orthonormal set in L 2(M) it follows 
that tfl, ... ,tfN form an orthonormal set in K I . We then de­
fine the two-body density associated withp(x) by (1.6). 

Our aim here is to show that when we use the functions 
(1.32) to compute the Hartree-Fock energy (1.4) we obtain 
the semiclassical approximations (1.17) and (1.28) in a cer­
tain asymptotic sense as N--+ 00. In Sec. 2 we show that the 
Hartree-Fock energy approaches the Thomas-Fermi ener­
gy to order N7/3. This corresponds to (1.26). We also show 
that the Hartree-Fock exchange energy approaches the 
Dirac exchange energy to order N 5/3. In Sec. 3 we derive 
heuristically a refinement of the Thomas-Fermi approxima­
tion which includes the Dirac and Von Weizsiicker correc­
tions. We use an attractive nuclear potential which smooths 
the Coulomb singUlarity. Hence the refinement does not 
contain a term aN 6/3 as in (1.27). 

Our method of approach in this paper is to use known 
results on short time asymptotics for the heat equation asso­
ciated with Q. In Sec. 2 we consider smooth compact mani­
folds for which rigorous results are known. II In Sec. 3 we 
assume that the results for the compact case extend to the 
noncom pact case. 

This work is a direct extension of the March and Young 
work 12 for the one-dimensional case. In the one-dimensional 
situation it is possible to write down the eigenfunctions of the 
Laplace operator explicitly, 13 which leads to considerable 
simplification. 

2. THOMAS-FERMI AND DIRAC EXCHANGE ENERGIES 

Let n C R3 be a bounded open set with smooth bound­
aryan and 

p: n--+R (2.1) 

be a C 00 function on the closure ii of n such that p(x) > 0, 
xeii, and 

f!(X)dX = 1. (2.2) 

We regard ii as a Riemannian manifold M with the metric 
p(X)2/3g. Hence M is a C 00 manifold of unit volume and with 
smooth boundary aM. The Laplace operator Q on M is de­
fined by (1.31). Let Qv be the self-adjoint extension of Q in 
L 2(M), which corresponds to Dirichlet boundary conditions. 
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For t> 0 the operator exp( - tQv) is a real symmetric com­
pact integral operator on L 2(M) with kernel G (x,y,t ),x,yef1. 
The function G (x,y,t) is in C oo(n Xn X (0, (0)) and for each 
t> OG(x,y,t )isinC I(n xii )suchthatG (x,y,t) = Oifxean. 
The operator Qv has pure point spectrum with real eigenval­
uesAj,j = 1,2, ... , such that 0 <AI <Az<A3< .. ·. We write the 
corresponding real normalized eigenfunctions as I,6j(x), 
j = 1,2,· ... Each function I,6j(x) is in C oo(n InC I(ii) and 
I,6j(x) = 0 if xean. 

For positive even integers N = 2,4, ... , we define a set of 

functions Ntfl' Ntf2'''''NtfN' by 

Ntfj(X, 0') = N 1/2p(N 1/3X)1/2I,6j(N 1/3X)D". I' 

Ntfj+ N 12 (x, 0') = N I/Zp(N 1/3X)1/2A..(N 1/3X)8 
'f'J a, - I' 

l<j<N /2. (2.3) 

It is easy to see that the functions Ntfj , 1 <j<N, are the single­
particle wave functions associated to the one-body density 
N 2p(N I 13X) by the prescription (1.32). We extend the 
Ntfj(X, 0') to R3 by setting Ntfj(X, 0') = 0 if xeR3 - n. Thus 
the functions N tfj , 1 <j <N, form an orthonormal set in the 
space Kl and we can also see that each Ntf(X, 0') is in the 

I 3 J 
Sobolev space H (R ). LetPN(x) be the one-body density as-
sociated with the Ntfj , 1 <j<N, so 

N 2 
PN(X) = L L [Ntfj(X, 0')] . 

,,= ± Ij= I 

We prove the following result 

Theorem 2.1: 

(a) lim N -7/3K (Ntfl'''',NtfN) = K min (p), 
N--oc 

(b) limN-7/3A(pN' VN)=A(p, V), 
N -"00 

(c) lim N- 7/3R(PN)=R(p). 

Proof (a) We have 

N -7/3K (NtfP''''NtfN) 

= h Z(4~m)-IN -513:~L [Vp(X) I IZl,6j(x) pdx. 

Let I (n) be given by 

I(n) = itlL [Vp(X) I IZl,6i(XWdx. 

On using the identity 

I,6Q1,6 = iQ1,6 Z + p-2/3(V1,6 f, 
we see that 

I(n) = I1(n) + Iz(n) + 13(n) + 14(n), 

where 

II(n) = itJ/il,6i(X)2p(X)S/3dX, 

Iz(n) = itl ~ L Q1,6 7(x)p(X)
S/3

dx, 

13(n) = itJn(VP I 12)Zl,6i (x)zdx, 
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I 4(n) = i ~ 1 Vp.Vcf> ;(x)dx. 
i= I 2 [J 

(2.12) 

We now use the well-known identity 

G(x,x,l) = Ie- A"cf>i(X)2, xEfl,I>O. (2.13) 
i= I 

We may differentiate (2.13) with respect to t to obtain 

JG ) ~ - A,t, '" ( )2 - -(x,X,! = £...., e Ai'!'; X . 
at ;= I 

(2.14) 

Ifwe integrate (2.14) againstp(x)s/3 we have 

( _ JG (x,X,! )p(X)5/3dx 
J[J at 

=I e - ,1;1 ( A;cf>;(X)2p(x)5/3dx. 
1= I Ja 

(2.15) 

On using the asymptotic formula, 14 

aG ) 3 -3/2 - Tt (x,x,t - 2t (4m) , 1-+0, (2.16) 

we see that 

lim 15/2 ( _ aG (x,X,1 )p(X)5/3dx 
,--0 In at 

= ~ 1T- 3/2 r p(x)s/3dx. 
16 In (2.17) 

Let n(A ) be given by 

n(A) = #{A j : Aj,,;;A}. (2.18) 

Then Weyl's theorem 15 yields 

limA -3/2n(A) = (6r)-I. (2.19) 
,1-00 

From (2.15) and (2.17) we obtain via the Karamata Tauber­
ian theorem 16 

limA -5/2II(n(A)) = (lOr)-1 ( p(X)5/3dx. (2.20) 
,1-00 J[J 

This asymptotic formula may be rewritten using (2.19) as 

lim n-5/3I\(n) = .l... 62/31T4/3 ( p(X)5/3dx. 
n-oo 5 In (2.21) 

Next we define I5(n) by 

(2.22) 

It is obvious from (2.10) on integration by parts that 

II2(n)I,,;;Is(n). (2.23) 

From (2.13) we have 

~ { G (x,x,1 ) I Q p2/3(X) I p(x)dx 
2 In 

If we use the asymptotic formula 14 

G (x,X,t )_(41Tt)-3/2, t-o, (2.25) 

we have that 
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lim t 3/21 ~ G (X,x,t )IQp 2/3(X)1 p(x)dx 
,_0 IJ 2 

= _1T_ IQ p 2/3(X)1 p(x)dx. -
3/2 l 

16 n 
(2.26) 

Thus from (2.23), (2.24), and (2.26) and Karamata's Tauber­
ian theorem we conclude that 

(2.27) 

Similarly we conclude that 

(2.28) 
n -"'00 

(2.29) 

The conclusion of (a) then follows from (2.5), (2.8), (2.21), and 
(2.27)-(2.29). (b) We observe that 

(2.30) 

We put 

J(n) = ;tllV(X)p(X)cf> ~(x)dx. (2.31) 

Suppose that fl contains the singularitiesR 1, ... ,R k of V(x) in 
its interior. From (2.13) we have 

i G(x,X,! ) V (x)P(x)dx 

= itle -A"iV(x),o(X)cf> ~(x)dx. (2.32) 

From (2.25) it follows that 

lim 13/2 { G (x,X,1 )V(x)P(x)dx ,--.() J[J 

= _1T_ V(x)P(x)dx. 
-3/2 i 
8 n 

(2.33) 

By the Karamata theorem it follows from (2.32) and (2.33) 
that 

limA -3/2J(n(A)) = (6r)-IA (p, V). (2.34) 
,1_00 

Hence from (2.19) we have 

limn-1J(n) =A (p, V), (2.35) 

from which (b) follows. Before turning to (c) we prove a slight 
generalization of the Karamata theorem. 

Lemma 2.2: Let m be a positive Borel measure on the 
quadrant [0,00 ) X [0,00 ) such that 

1'" 1'" e - (au + /3V)dm(u, v) < 00 (2.36) 

for a, {J> 0, and b (u, v) be a nonnegative Borel measurable 
function on [0,00 ) X [0, 00 ) with 

100 100 

e - (au + /3V)b (u, v)du dv < 00 (2.37) 

if a, {J> o. Suppose there is a r> 0 such that 
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lim t ri"'i'" e - (au + /3V)'dm(u, v) 
,--0 0 0 

= i"'1"'e-(au+/3v1b(U,V)dUdV (2.38) 

for all a, p> 0. Then 

lima-rm{[O, a] X [0, a]} = ililb(U, v)du dv. (2.39) 
Q-oo 0 0 

Proof Define a family of measures m" t> 0, by 

m,(A) = trm(t -IA), (2.40) 

where A C R3 is a Borel set. Then (2.38) becomes 

limi"'i'" e-(au+/3v1dm,(u, v) 
,--0 0 0 

= i'" i'" e - (au + /3v1b (u, v)du dv (2.41) 

for all a, p> 0. Since the family of measures 

e-(u+vldm,(u, v), t>O, (2.42) 

is uniformly bounded we can conclude from (2.41) and the 
Stone-Weierstrasse theorem that for every continuous func­
tionf [0,00) X [0, 00 )_JR3 which disappears at 00, 

limi"'i"'f(U, v)e - (u + V1dm,(u, v) 
,--0 0 0 

= 1"'1'" flu, v)e - (u + v1b (u, v)du dv. (2.43) 

From (2.43) it is easy to see that 

limilildm,(U, v) = ili
l 
b (u, v)du dv, (2.44) 

,--0 0 0 0 0 

and (2.44) is equivalent to (2.39). 
Proof of (c): We have 

N- 7/3R (PN) 

= 4N -2 ( ( p(xlo(Y) I tP ;(x)tP t(y) dx dy. (2.45) 
JnJn i.j= I Ix - yl 

For a, p, t> 0, we consider 

(Jp(Xlo(Y)G (x,x,at )G (y,y,/3t) dx dy 
J n Ix-yl 

= 1'" 1'" e - (au + /3v1'dm(u, v), (2.46) 

where 

m(A ) = )' (( p(xlo(Y)tP ;(x)tP t(y) dx dy, (2.47) 
(J.."'r;)EAJnJn Ix - yl 

for every Borel set A C JR2
• From (2.25) we conclude that 

lim t 3 ('" ("'e-(au+/3v)'dm(u, v) 
,--0 Jo Jo 

= (ap)-3/2(41r)-3R (p). (2.48) 

Using the fact that 

('" ('" e - (au + /3vl(uv) 1/2du dv = ~ (ap )-3/2 

Jo Jo 4 
(2.49) 

and Lemma 2.2, we see that 
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lim/L -3m{[0,/L] X [O,/L]) = (6r)-2R (p). (2.50) 
J.~oo 

Then (c) follows from (2.50) and (2.19). 
As a corollary to Theorem 2.1 we may prove part of 

(1.26). 
Corollary 2.3: 

lim N -7/3 EJ.N(VN )<;;;EJ. (V), 
N~oo 

where N goes to 00 through integer values of /LN. 

Proof Since each function N'h(x,a) of(2.3) is in H I(JR3) 
and the exchange energy is negative we conclude from 
Theorem 2.1 that 

lim N -7/3EJ.N(VN) 
N~oo 

<;;;/L 7/3[Kmin(P) +A (p,vl/J.) + R (p)] 

= ETF(PJ., V), 

where pA (x) is defined by 

pA (x) = /L 2p(/L • /3X). 

(2.51) 

(2.52) 

One can easily see that it is possible to choose a sequence of 
functions Pi(X), i = 1,2,00', satisfying (2.1) and (2.2) such that 

This completes the proof of the corollary. 
Next we consider the exchange energy. 
Theorem 2.4: 

(2.53) 

lim N -s/3Ex(NtP.,00"NtPN) = - 34/37T-./ 34 -·X(p), 
!f-oo 

where X (p) is given by 

X(p) = i p(X)4/3dx. 
R' 

Proof We have 

N -s/3Ex(NtP.,00"NtPN) 

(2.54) 

_ N -4/3 Lf/(Xlo(Y)i.%.tPi(X)tPi (Y)tPj (x)tPj(Y) I~x :~I . 
(2.55) 

For t> ° the Green's function G (x,y,t ) is given by 

G(x,y,t) = Ie-A"tPi(X)tPi(Y)' (2.56) 
;= I 

where the series on the right is absolutely convergent. Hence 
if a, p> 0, then 

( ( p(x)P(y)G (x,y,at)G (x,y,/3t) I
dX 

dY

I JnJn x - y 

= 1"'100 

e -(au + /3vl'dm(u, v), 

where 

(2.57) 

m(A) = I (( P(X)P(Y)tPi(X)tPi(Y)tPj (X)4>j(y)l
dX 

dY

I 

' 

(A,. J.)EAJnJ!1" X - Y 
(2.58) 

for every Borel setA CJR2. Since the function Ixl-· is positive 
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definite it follows that m is a positive measure on 
[0,00 ) X [0, 00). We now use the asymptotic formula II for 
G(x,y,t), 

G(X,y,I)-(41Tt)-3/2exp [ _ d2~:,y)], 1-0. (2.59) 

Here d (x,y) is the Riemannian distance from x to y in the 
metric p(X)2/3g. Thus for y close to x we have 

d 2(x,y)_p(x)2/3 Ix _ Y12. (2.60) 

We conclude that 

lim t 2 f f p(x)P(y)G (x,y,at )G (x,y,/3t) dx dy 
1--0 JnJn Ix - yl 

= lim t -1(41T)-2(a/:1)-3/2 f f""p(X)2 
1--0 JnJo 
xexp [ - p2/~;)r (a-I +P-I)]rdrdx 

_1 1 X( ) (261) 
8~ (aP)1/2(a +P) p. . 

In order to apply Lemma 2.2 we need to find a positive 
functionf(u, v) on [0,00) X [0, 00) such that 

Sa"" Sa"" e-(au+{3ulj(u, v)du dv = (aP)-1/2(a +P)-I 

(2.62) 

for all a, P> O. We put 

Fa (v) = Sa"" e - aUf(u, v)du. (2.63) 

Hence (2.62) becomes 

5t'Fa(f3) = (aP)-1/2(a +P)-I, P>O (2.64) 

where 5t' denotes Laplace transform. On using the convolu­
tion theorem for Laplace transforms we conclude that 

Fa(v) = fe-a(U- Wi(1Taw)- 1/2dw. (2.65) 

For 0 < w < v < 00 and u > 0 let hu. w (u) be defined by 

hu. w(u) = 1T-
1 [w(u - v - w)] -1/2 if u> 

= 0 if u< v - w . 

v-w, 

(2.66) 

It is evident that 

5t' hu. w(a) = e - a(u - Wi(1Taw)-1/2, a> O. (2.67) 

Ifwe putfu(u) = flu, v) then (2.63) may be written as 

Fa (v) = 5t'fu(a), a> O. (2.68) 

From (2.65) and (2.67) we deduce that 

fu(u) = fh u. w(u)dw. (2.69) 

Evaluating the integral in (2.69) we obtain 

2 [u
I/2

+vIf2] 
flu, v) = -In I 11/2 ' 

1T U - v 
(2.70) 

and an elementary calculation yields 

1
111 2 flu, v)du dv = -. 

o 0 1T 
(2.71) 
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Now from (2.57), (2.58), (2.61), and Lemma 2.2 we con­
clude that 

limA. -2m {[0,A.] X [O,A.]} = (4~)-IX(p). (2.72) 
A~"" 

Hence from (2.19) and (2.55) we obtain the result of the 
theorem. 

3. REFINEMENT OF THOMAS-FERMI THEORY 

We have seen in Sec. 2 that by choosing the functions 
(1.32) to form the two body density we obtain the semiclassi­
cal approximations (1.13) and (1.17). Here we again use these 
functions to obtain the refinement (1.27) of the Thomas­
Fermi approximation. 

We consider a modified atomic potential V(x) defined 
by 

V(x) = f ~dy, 
JR' Ix - yl 

(3. I) 

where h: R3--+R is a non-negative C"" function which is 
spherically symmetric and has support in a region Ixl <€ 
such that 

f h (x)dx = 1. 
J1xl <E 

(3.2) 

Thus V(x) is a C "" spherically symmetric function such that 
V(x) = lxi-I if Ixl;;;.€. Let PTF (x) be the neutral Thomas­
Fermi density associated with V(x). HencepTF(x) satisfies 
(1.21) and (1.22) with,po = O. If € is sufficiently small then 
PTF(X) is a strictly positive C "" function in R3 and is spheri­
cally symmetric. We regard R3 as a Riemannian manifold M 
with the metric PTF (X)2/3g. Let Q be the Laplace operator on 
M and QD be the Friederichs' extension of Q to L 2(M). 

Theorem 3.1: QD has pure point spectrum. 
Proof SincepTF(x) is spherically symmetric we may by 

introducing spherical harmonics reduce the problem to a 
one-dimensional one. For / = 0, 1, 2, ... , let Q 1 be the operator 
on functions with domain 0 < r < 00 defined by 

QI= -1 ~[ (r)1/3r~] /(/+1) 
rpTF(r) dr PTF dr + PTF(r)2/3r . 

(3.3) 

Evidently Q 1 is formally self-adjoint and positive on the 
space L 2[(0, 00 ), PTF (r)rdr]. Let Q ~ be the Friederichs' ex­
tension of Q I. We need to show that Q ~ has pure point 
spectrum for / = 0, 1,2, .... 

We proceed in the standard manner. 17 We make a 
change of variable r_s given by 

ds 
- = rpTF(r). (3.4) 
dr 

In the s variable the operator Q 1 becomes 

AI= -d [P(S)~] +ql(s), 
ds ds 

where 

pIs) = r4PTF (r)4/3, 

ql(s) = IIi + lloTF(r)-2/3r-2. 

Defining s"" by 
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s"" = i"" rpTF (r)dr, (3.8) 

we see that A I is formally self-adjoint on L 2(0, s"" ) and its 
Friederichs' extension A b is unitarily equivalent to Q b. 

We make a further change of variable s_t by 

ds = p(s)1/2. (3.9) 
dt 

Let t"" be given by 

(3.10) 

We define a unitary transformation OJ- from L 2(0, s"" ) onto 
L 2(0, too) by 

~g(t)=g(s(t))S'(t)1/2, gEL 2(0,s",,). (3.11) 

In the t variable the operator A I becomes 

d 2 

BI = - -2 + V/(t), 
dt 

(3.12) 

where 

V/(t) = q/(s) - n,[p'(sf/p(s)] + Ap"(s). (3.13) 

Thus B I is formally self-adjoint on L 2(0, too) and its Frieder­
ichs' extension B b is unitarily equivalent to Q b. 

We show that B I is essentially self-adjoint with pure 
point spectrum if I> 1. To do this we need to use the fact lH 

that 

lim (!!.. )mpTF (r)_271T- 3(!!.. )mr - 6 , m = 0,1,2, 
H"" dr dr 

(3.14) 

where we have taken the constant C in (1.21) to be 1. From 
(3.14) we deduce that t"" < 00 and that 

v /(t)-I(/+I)(t"" _t)-2, t-+t"". (3.15) 

Using the fact that PTF (r) is Coo at r = 0 we also see that 

v/(t)-[I(I+I)+I]t- 2, t-+O. (3.16) 

From (3.15) and (3.16) we see by an application of Theorem 
6.23 in Chap. 13 of Ref. 17 that B I is essentially self-adjoint if 
I> O. By Theorem 7.17 in Chap. 13 of Ref. 17 it follows that 
B b has pure point spectrum for I> O. 

We must deal with the case of B I for I = 0 separately. In 
that case we apply Theorem 5 of Ref. 18 to deduce that 

lim sup! (t "" - t fVo(t)! = O. (3.17) 
I-to><' 

It follows then from Theorem 6.23 of Ref. 17 that B 0 has two 
boundary values at too' Hence by Theorem 6.12 in Chap. 13 
of Ref. 17 the endpoint t"" does not contribute to the essen­
tial spectrum. Just as for I> 1, neither does the endpoint 0 
and so we conclude that B ~ has pure point spectrum. This 
proves the theorem. 

Corollary 3.2: Let t/J (x) be an eigenfunction of QD and 
put ¢(x) = fpTF (x)] 1/2 t/J (x). Then ¢(x) is in the Sobolev space 
H I(R3

). 

Proof Since t/J (x) is an eigenfunction of QD it follows 
that 

(3.18) 
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(3.19) 

The result now follows from (3.14). 
We wish to investigate the behavior of the eigenfunc­

tions t/J (x) of QD as x-+ 00. To do this we need some lemmas. 
Lemma 3.3: Let q: (O,I]-+R be a continuous function 

such that 

lim t 2q(t) = a, 
t--0 

(3.20) 

where a >~, and u(t), 0 < t < 1, be a solution of the equation 

u"(t)=q(t)u(t) (3.21) 

such that 

fU(t )2dt < 00. (3.22) 

Then there is a constant A > 0 such that 

!u'(t)!<A, !u(t)!<At, O<f< 1. (3.23) 

Proof Choose E with 0 < E < 1 such that 

t 2q(t »~, 0 < t<E. (3.24) 

Suppose utE) > 0, U'(E) < O. From (3.21) we see that u(t) is con­
vex forO < t<Eandso u(t) > 0,0 < t<E. Letv(t), 0 < t<E, satis­
fy the equation 

v"(t) = ~t -2V(t), (3.25) 

with the initial condition 

ViE) = utE), V'(E) = u'(€}. (3.26) 

It is easy to see that 

O<v(t)<u(t), O<f<E. (3.27) 

We may solve (3.25) explicitly to obtain 

v(t) = CIt 3/2 + c2t -1/2, (3.28) 

where C I and c2 are constants. Since ViE) and v' (E) have oppo­
site signs we must have c2 #0. Consequently 

f v(t fdt = 00, (3.29) 

and from (3.27) it follows that (3.22) does not hold. 
Wemaythereforeassumethatu(t) > 0, u'(t) > 0,0 <t<E. 

In view of(3.21) u'(t) is increasing for 0 < t < E. Hence limt-->ll 
u'(t) exists. From this fact we may easily deduce the inequal­
ities (3.23). 

Lemma 3.4: Let q: (0, 1]-+R be a continuous function 
such that 

lim t 2q(t ) = 0 
t-->ll 

and u(t), 0 < t < 1, be a solution of 

u"(t) = q(t )u(t). 

Then for any 0 > 0 the following inequalities hold: 

lim sup!t 6u(t)! < 00, 
t-.() 

lim sup!t I + V(t)! < 00. 
t-->ll 

Proof Similar to Lemma 3.3. 
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Theorem 3.5: Let 4> (x) be an eigenfunction of QD. Then 
4> (x) ia a C '" function such that for any 8 > 0 the following 
inequalities hold: 

lim sup Ixl- I - °14> (x)1 < 00, (3.34) 
X--oo 

lim sup Ixl- °IV4> (x)1 < 00. (3.35) 

Proof Follows from Lemmas 3.3 and 3.4. 
In order to obtain the refinement of Thomas-Fermi 

theory we must make several important assumptions. For 
t> 0 the operator exp( - tQD) is a real symmetric compact 
operator on L 2(M). We shall suppose it is an integral operator 
with kernel G (x,y,t ),X,YEIR\ where G (x,y,t ) is in C '" 
(1R3 X 1R3 X (0, 00)) and is a fundamental solution for the heat 
equation associated with Q.1t follows 14 that G (x,x,t ) behaves 
asymptotically, as t-O, like 

G(x,x,t)-(41Tt)--3/2[1 + (tI3)K(x) + ott)], (3.36) 

for any fixed xE1R3
. Here K(X) is the scalar curvature of M, 

which turns out to be 

K(X) = 4PTF(X)-1 (PTF (X)I 16LlpTF(X)1 16]. (3.37) 

Similarly for fixed xE1R3
, aG 1 at (x,x,t ) is given asymptotical­

ly as t-o by 

aG (x,x,t )-(4m )-3/2[ - 3 - iK(x) + 0(1)]. (3.38) 
at 2t 

Next we assume that the asymptotic formulas (3.36) and 
(3.38) are uniform in x to the extent that we may integrate 
(3.36) and (3.38) against a continuous function/Ix) over 1R3

, 

where/Ix) decays like Ixl-6 asx-oo. In particular we have 
from (3.36) the formula 

i,G (x,x,t )PTF(x)dx 

- (41Tt) -3/2 [1 - (4t 13).1 + o(t)), (3.39) 

where J is given by 

J = ( [VPTF(X)1/6Pdx. 
JR' 

(3.40) 

As in Sec. 2 let QD have real eigenvalues Aj,j = 1,2, ... , with 
corresponding real eigenfunctions 4>j(x). Then (3.39) is equiv­
alent to 

Ie -A} -(41Tt t 3/2 [ 1 - (4t 13).1 + o(t )]. 
j~1 

(3.41) 

If n(A ) is defined as in (2.18) then (3.41) and the Karamata 
Tauberian theorem yields (2.19). A conjecture ofWeyl15 sug­
gests that we may separate out the second term in the asymp­
totic expar.sion of n(A ). In that case n(A ) must be given by 

n(A )-(6r)-1 [A 3/2 _ 2JA 1/2 + a(A 1/2)), A-oo. 
(3.42) 

We shall assume that (3.42) holds. 
Now with the notation of Sec. 2 and takingp =PTF' 

fl = 1R3
, we consider 

K(N¢I'···'N¢N) = h 2(4rm)-W2/3I(N /2). (3.43) 

The function I(n) may be written as the sum (2.8) with II(n) 
and 13(n) given by (2.9) and (2.11), respectively. From Theo-
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rem 3.5 we may integrate by parts in (2.10) and (2.12) to 
obtain 

12(n) = itl ~ 1,4> f(QpTF 2/3PTF (X)dx, 

n 1 ( 2 
14(n) = - i.?12 JR,4> iLlpTF(X)dx. 

We define Borel measures m, M on 1R+ by 

m [0, A ] = 12(n(A )), 

M [0, A] = Is(n(A)), 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

with Is as in (2.22). It is evident that M is a positive measure 
and that the signed measure m satisfies 

(3.48) 

Further, by our assumption on the uniformity of the asymp­
totic formula (3.36) we have 

lim t 3/2 ('" e - Atdm(A ) 
t-->O Jo 

=0, (3.49) 

(3.50) 

We would like to conclude from (3.49) and the Karamata 
theorem that 

limA -3/2m [0,A] =0. (3.51) 

Since m is not a positive measure we cannot apply the Kara­
mata theorem directly. However, from (3.48), (3.49), (3.50), 
and the proof of the Karamata theorem we see that (3.51) 
holds. Thus 

limA -3/
212(n(A)) = O. (3.52) 

A '00 

Similarly we see that 

limA -3/214(n(A)) = 0, (3.53) 
A '00 

and by direct application of the Karamata theorem we con­
clude that 

li~A -3/213(n(A)) = (6r)-li,(VPi";)2dX. (3.54) 

We wish to estimate II(n(A )) aSA-oo to order A 3/2. To 
do this we use the identity 

(oo e -AtdII(n(A)) = ( - JG (x,x,t )PTF(X)S/3dx. 
Jo JR' at 

(3.55) 

Making the assumption that the asymptotic formula (3.38) is 
uniform in x we have from (3.55) 
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LX> e-A1dII(n(...t)) 

--k,1T- 3/2
t - 5/21 PTF(x)5/3dx 

R' 

- Its-1T- 3/2t - 3/2L + ott -3/2), (3.56) 

where L is given by 

L = i,(VPTF 1/2)2dx. (3.57) 

In analogy with the Weyl conjecture which led to (3.42) we 
shall assume by virtue of(3.56) thatll(n(...t)) is given to order 
...t 3/2 by 

II(n(...t ))-(IW)-I...t 5/2ifTF(X)5/3dX 

(3.58) 

We may now estimate I (n) as n_ 00 to order n by using 
(3.42), (3.52), (3.54), and (3.58). We obtain 

I(n)-! !(6~)2/3n513 + Un] ifTF(xf/3dX 

+ HLn + o(n). (3.59) 

Consequently from (3.43) we have 

K(NtPl""'NtPN) 
- [N 7/3 + IOJ 3 -5131T-4/3N5/3]Kmin (PTF) 

+ N 513CwL + 0(N 513 ), (3.60) 

where the Von Weizsacker constant Cw is given by 

Cw=h2(4~m)-IR (3.61) 

This value of C w differs from the value proposed by Von 
Weizsacker.7 In fact his constant is h 2(8~m)-I. 

Let VN be defined by (1.23), where the potential V(x) is 
given by (3.1), andpN(x) by (2.4), where the functions tPj are 
associated withPTF(x). By making assumptions on the uni­
formity of the asymptotic formula (3.36) and assuming a 
Weyl-type conjecture we can estimate A (PN' VN) to order 
N 5/3 asN-oo. We obtain 

A (PN' VN)- [N 7/3 + U(3~)-2/3N5/3]A (PTF' V) 

+ 2(3~)-2/3N513 i,VPTF 1/6.aPTF 1/6dx + 0(N 513). 

(3.62) 

In a similar fashion we have 

R (PN)- [N 7/3 + 4J(3~)-2/3N5/3]R (PTF) 

+ 4(3~)-2/3N5/31 1 PTF(X~¥:(y)..1p¥:(y) dx dy 
R'R' Ix - yl 

+ 0(N 513 ). (3.63) 
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We conjecture that the asymptotic formulas (3.60), 
(3.62), and (3.63) are correct and that Theorem 2.4 may be 
extended to the case of P = PTF' It then follows from Corol­
lary 3.2 that we may obtain a refinement of Corollary 2.3, 
namely, 

EN(VN)<N7/3EI(V) + (3N 513 + 0(N 5/3 ), (3.64) 

where E I( V) is the Thomas-Fermi energy for the atom with 
nuclear attractive potential (3.1), and (3 is the sum of the 
terms in (3.60), (3.62), and (3.63) of order N S

/3 plus the ex­
change energy. 

Remark 1: The main obstruction to proving the asymp­
totic formulas (3.60), (3.62), and (3.63) is undoubtedly the 
Weyl-type conjectures which we have assumed. Even for the 
Euclidean Laplacian in a bounded domain the Weyl conjec­
ture has been verified in only a few cases. 19 

Remark 2: If instead of the potential (3.1) we had taken 
the Coulomb potential V (x) = Ix I-I then Theorem 3.1 
would still hold but Corollary 3.2 would not. We might ex­
pect this to be the case to account for the term aN6/3 oft 1.27). 
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A variational principle is formulated for the dynamical evolution of the Hopf characteristic 
functional (/J = (/J [y(x),t ] by employing an appropriate functional integral over all parameter 
fields y(x). It follows that the ratio offunctional integrals r =S(/J *4'>D(y)lSI(/J 12D (y) is an exact 
constant of the motion during the decay of boundary-free Navier-Stokes incompressible fluid 
turbulence. Bearing the physical dimensions of inverse time, the constant of the motion r is a 
scalar function of the multipoint velocity correlation tensors embodied in (/J. For statistical 
situations such that the probability measure over the velocity-field ensemble is semi-Gaussian 
(i.e., the real part of In (/J is a quadratic functional of y), r is evaluated explicitly in terms of the 
two-point velocity correlation tensor. 

PACS numbers: 47.25. - c, 47.10. + g 

I. INTRODUCTION 

Although the essentially nonlinear, dissipative Navier­
Stokes equation 

aulat = vV2u - u·Vu _p-1Vp, V·u=O, (1) 

u = u( x,t ) defined for all x E R 3 , v, p=positive constants, 

does not admit a conventional variational principle, it has 
been shown recently that a physical minimum principle can 
be formulated for solutions to (1).1 However, if one considers 
the multipoint velocity correlation tensors of turbulent 
flows, there remains an open question regarding the exis­
tence of a minimum or a variational principle for the dyna­
mical evolution of the latter statistical quantities. 

In the statistical theory for turbulent incompressible 
fluid flows, all equal-time multipoint velocity correlation 
tensors are contained in the Hopf characteristic functional2 

(/J = (/J (y,t )= (exp i I Uj (x' ,t lvj (x')d 3X') 

= 1 + i I (uj(x',t )Yj(X') d 3X' 

- ~ II (Uj(x',t)Uk(x",t)Yj(x'lvdx")d3X'd3X" 

- ~ I I I (uj(x',t )uk(x" ,t )u,(x"',t) 

XYj(x'lvdx"lvdx"')d 3x'd 3X" d 3X"' + "', (2) 

the complex-valued Fourier transform of the probability 
measure over u. It follows from the definition (2) that (/J satis­
fies the conditions 

(/J (O,t )=1, I(/J (y,t)l.;;; 1, 
(/J (y,t )*-(/J ( - y,t), (/J (y,t )-(/J (ylr ,t), (3) 

where y.r=y - V- 2V(V.y) is the transverse part of the real 
parameter vector-field y = y(x). The characteristic func­
tional (2) changes with time according to the linear equation 
first derived by Hopf·3 

"The work reported here was supported by NASA grant NAGI-llO. 

4'> _a(/J I at = (F - is )(/J, (4) 

in which there appear the first-order and second-order time­
independent functional differential operators4 

F=v I Yj(x)V2(0!0Yj(x))d 3X = F*, (5) 

I a Ir(X) -,,2 
S= ~ U d 3x=S*. 

aXk t5Yj(x)oydx ) 
(6) 

Equation (4) is a consequence of the fact that every velocity 
field in the ensemble evolves according to (I), and the real 
operators (5) and (6) manifest the statistical dynamical effects 
of the viscous and inertial forces evident in (I). Intertwining 
of viscous and inertial effects in Navier-Stokes incompress­
ible fluid turbulence shows up in the nonzero commutator of 

(5) and (6), 

[F,S] = 2v I ay)'(x) (~_O_)(~ _0 _) d 3X • 

aXk ax, OYj(X) ax, 0Yk(X) 
(7) 

In Sec. II a variational principle is formulated for the 
Hopf dynamical equation (4) by employing an appropriate 
functional integral over all parameter fields y(x). This result 
is particularly significant in view of the current interest at­
tached to self-organizing variational principles in lower-di­
mensional and related forms ofturbulence.5 From this vari­
ational principle displayed below in (20), one obtains the 
time dependence of the quantity 

((/J,(/J )- I I(/J (y,t WD (y) (8) 

by way of Noether's theorem. It follows immediately that 
the ratio of functional integrals of the same type 

r =((/J,4'> )/((/J,(/J) (9) 

is an exact constant of the motion during the decay of bound­
ary-free Navier-Stokes incompressible fluid turbulence, 

drldt=o, (10) 

as shown by the calculation in Sec. III. Bearing the physical 
dimensions of inverse time, the quantity (9) is a scalar func­
tion of the multipoint velocity correlation tensors embodied 
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in <P [see (2) above]. In Sec. IV ris shown to be given exclu­
sively in terms of the two-point velocity correlation tensor 
(31) by the integral (34) for statistical situations such that the 
probability measure is semi-Gaussian, i.e., the characteristic 
funtional takes the form (29) during a certain time-interval of 
the decay. Amenable to practical evaluation, the functional 
integral concomitants of <P in (9) and (20) provide valuable 
new insights into the theory for Navier-Stokes incompress­
ible fluid turbulence. 6 

II. VARIATIONAL PRINCIPLE FOR THE <P EQUATION 

Let an inner-product for complex-valued functionals of 
y be defined by 

(11 ) 

The infinitesimal volume element or measure in (11) is ex­
pressed symbolically as7 

D (y) = (normalization) II [d 3y (X)] (12) 
constant XER, 

and the integration in (11) is understood to run from - 00 to 
+ 00 for each component ofy(x) at all x. Observe that (12) 

has the property of displacement-in variance, 

D(y + a)-DIY), ( 13) 

where a = a(x) is an arbitrary real vector field independent of 
y; in view of(13), finiteness of the inner-product (11) for cer­
tain <P(II and <P121 implies that8 

__ 11_1 <P <P * __ 12_1 D = 0 I (fJ<P * fJ<P ) 
bYj(X) (21 + (II bYj(x) (y) . 

(14) 

The adjoints of operators (5) and (6) are defined implicitly by 

(<PII ) ,F<P12) )-(Ft <P(II ,<P121 ), (15) 

(<P(II ,S<P121 )-(S t <P(II ,<P(2) ), 

and determined by making use of (14), 

Ft = -F+c, 

st =S, 

where 

c- - 3v I V'2b(31(x)lx~o d 3x 

is a positive real constant. 9 

(16) 

(17) 

(18) 

( 19) 

In terms of (11) the variational principle for (4) takes the 
form 

(20) 

with b<P and o<P * equal to zero at the terminal times to,t I but 
arbitrary (and treated as mutually independent) for 
to < t < t I' Clearly, the b<P * term that arises in (20) vanishes if 
and only if (4) is satisfied, while the o<P term (obtained by 
parts integration with respect to t) vanishes if and only if 

- (P * + c<P * - Ft <P * + iS t <P * = O. (21) 

In view of (17) and (18), (21) becomes 

- (P * + F<P * + is<P * = 0, (22) 
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which isjust the complex-conjugate of(4). Hence (20) is equi­
valent to (4). 

As a consequence of the variational principle (20), 
Noether's theorem applies and takes the form 

e - ct,(<P b<P ) I = e - cto(<P b<P ) I 
'1] 'to' (23) 

where b<P is the change in the characteristic functional asso­
ciated with an infinitesimal transformation that leaves the 
integral in (20) unchanged. The obvious invariance transfor­
mation 

<P--+eiu<p, <P *--+e - iu<p *, a = (real constant), (24) 

gives b<P = i<Pba and thus yields 

(<P,<P )It, = eclt , - tol(<P,<P )It". (25) 

Shown in (25), the time-dependence of the quantity (8) can 
also be derived by multiplying (4) by <p *, integrating the real 
part of the resulting equation over y with the measure ( 12), 
and finally using (17) and (18) to get 

d 
- (<P,<P) = c(<P,<P). (26) 
dt 

III. CONSTANCY OF r 
It follows from (4) that 

(<P,iP) = (<P,F(P - is(P) = (Ft <P,(P), 
. t . . . 

- lIS <P,<P) = - (F<P,<P) + c(<P,<P), (27) 
- i(S<P,(P) = - (P,(P) + c(<P,(P), 

where (15)-(18) and the complex-conjugate of (4) have been 
employed. Thus the time-derivative of (9) is 

dr = (<P,iP) + (P,(P) _ (<P,(P) d (<P,<P) = 0 (28) 
dt (<P,<P) (<P,<p)2 dt 

by virtue of (27) and (26). 
Observe that the constancy of r defined by (9) is analo­

gous to the constancy of the Hamiltonian expectation value 
(H) in quantum field theory. The slight complication here 
comes from the non-skew-adjointness of F( #- - Ft) shown 
in (17), but the dynamical effects of c cancel out in (9). 

IV. EVALUATION OF r FOR A SEMI-GAUSSIAN 
STATISTICAL ENSEMBLE 

Suppose that 

( III R ( , " 1 (') ( ")d 3 'd 3 " <P = exp -"2 jk X ,x ,t lYj x lYk X X X 

+ iA [y,t]) 

(29) 

is a suitable approximation for the characteristic functional 
during a certain time-interval of the decay, where 

A [y,t] A [y,t] * - A [ - y,t] (30) 

is an arbitrary real odd functional ofy. The semi-Gaussian 
form (29) is consistent with (2) and (3) provided that 

Rjk(x',x",t) = (uj(x',t)udx",t) (31) 

is the positive-definite symmetric solenoidal two-point ve­
locity correlation tensor. For the numerator in (9) one ob­
tains 
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(<1>,cP) = I ( - ~ I I Rjdx',x" ,t lYj(x'lYdx")d 3x 'd 3X " 

+iA [y,t])I<1>1 2D(y) (32) 

- ~ II Rjdx',x",t) I yy(x'lY~(x")I<1> 12D(y) 

xd 3x 'd 3X " 

because 

1<1> 12 = exp (- II Rjk(x',x",tlYj(x'lYdx")d Vd 3X ") 

(33) 

is even in y while A [y,t] is odd as a consequence of(30). The 
remaining Gaussian functional integral in the final member 
of(32) is well known,7.8 and thus (9) is evaluated as 

r 1 II R' (' " )R - 1(' " ) d 3 'd 3 " = - 4 jk X ,x ,I jk x ,x ,t x x, 

(34) 

where R - I is the matrix-kernel inverse to R on the space of 
solenoidal vector-fields: 

I R jk l(x',x,1 )Rkf(X,X" ,I) d 3X = o;nx' - x") 

- (0 - V -;- 2 a
2 

) o(3)(x' - x"). (35) 
Jf x a' a ' Xj x f 

Clearly, if the time-dependence in (31) resides entirely in a 
scalar prefactor,1O 

Rjdx',x",t) = u2(t)Cj dx',x"), 

then (35), (34), and (10) imply that 

d 2[ln U 2(1 )]!dl 2 = o. 

(36) 

(37) 

Equation (37) shows that the decay of u2 is exponential dur­
ing the time-interval for which (29) remains valid as an ap­
proximation. 

V. PROBABILISTIC SIGNIFICANCE AND VALUE OF r 

As established by Liouville's theorem, the flow of prob­
ability is incompressible in phase space for a conservative 
Hamiltonian dynamical system. The Navier-Stokes equa­
tion (1) describes a nonconservative dynamical system with 
dissipation produced by the viscosity term. As a conse-
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quence, probability flows like a uniformly contracting com­
pressible fluid in infinite-dimensional u(x)-space. A simplify­
ing feature of the probability flow in u(x)-space is that the 
divergence of the flow-lines equals - c for all u(x) and t, 
where the positive constant c is defined by (19). It is this 
constancy of the probability-flow divergence which pro­
duces constancy of r defined in (9). By introducing the prob­
ability density3 P [u,t] as the functional Fourier transform of 
(2), the quantity (9) is expressible as 

r= ~ :tln(I P[U,t]2D(U)) (38) 

while (26) becomes 

:tI P[u,t]2D(u)=c I P[u,t]D(u). (39) 

Thus, constancy of the probability flow divergence [implicit 
in the Hopf equation (4)] engenders the value which follows 
from (38) and (39), 

'G. Rosen, 1. Math. Phys. 23, 676 (1982). 
'G. Rosen, 1. Math. Phys. 22,1819 (1981). 

(40) 

'E. Hopf, J. Ratl. Mech. Anal. 1,87 (1952); E. Hopf and E. W. Titt, J. Ratl. 
Mech. Anal. 2, 587 (1953). 

'It should be noted that S</J = S(aY;'(X)/aXk )(o'</J IOYj(x)8y.(xll d 3X 

= - SY;'(X)(OIOYk (x))V k (o</J IOYj(xll d 3X by virtue of the fourth condi­

tion in (3), which implies that V k (o</J IOYk (xII = O. 
'A. Hasegawa, Y. Kodama, and K. Watanabe, Phys. Rev. Lett. 47,1525 
(1981). 

o A space-time path integral representation ofthe general solution to (4) has 
been known for over 20 years [G. Rosen, Phys. Fluids 3, 519, 525 (1960); I. 
Hosokawa, 1. Math. Phys. 8, 221 (1967); G. T. Papadopoulis, in Path 
Integrals and Their Applications in Quantum, Statistical, and Solid State 
Physics (Plenum, New York, 1978), pp. 85-162], but the problem of ex­
tracting experimentally relevant information from such a path integral has 
yet to be solved. 

7This type of functional integration measure was defined rigorously by: K. 
O. Friedrichs, H. N. Shapiro, et al., Integration ojFunctionals (New York 
University, Institute of Mathematical Sciences, 1957). 

"G. Rosen, in Path Integrals and Their Applications in Quantum, Statisti­
cal, and Solid State Physics (Plenum, New York, 1978), pp. 201-235. 

°Formally infinite as defined in (19), the constant c equals 3vK 5 V 11O?r if 
one imposes a wavenumber cutoff K>lkl and finite spatial volume V, with 
K --> 00 , V --> 00 understood to be taken as the final step in all calculations. 

lOSee, for example: G. Rosen, Phys. Fluids 24,558 (1981). 
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An approximate solution of the oscillatory flow of an electrically conducting fluid, between two 
parallel and electrically conducting plates and under transversely applied magnetic field, is given 
for the transient velocity, the transient magnetic field, amplitude and the phase of the skin friction 
and the rate of heat transfer. It is observed that the transient flow, amplitude, and the phase of the 
skin-friction and the rate of heat transfer are affected by the individual electrical conductance 
ratios of the plates, which is not so in the case of steady magnetohydrodynamic (MHO) channel 
flow between conducting plates. 

PACS numbers: 47.65. + a, 47.60. + i, 47.25.Qv 

1. INTRODUCTION 

Steady MHO channel flows have been studied during 
last 20 years by a number of researchers because of its appli­
cations in MHO generators, MHO flow meters, nuclear en­
gineering etc. These are discussed in books like Cowling, 1 

Pai,2 Sutton and Sherman,3 and Hughes and Y oung4 under 
different physical conditions. In all these studies, the chan­
nel is bounded by electrically nonconduction plates. How­
ever, in a number of cases, the plates of the channel become 
electrically conducting. This leads to a change of boundary 
conditions on the induced magnetic field and it is derived by 
Shercliff. 5 Taking into account electrically conducting 
plates, the steady MHO channel flow was studied by Chang 
and Yen,6 whereas the heat transfer aspect of this flow was 
studied by Soundalgekar.7 

In all these studies, the pressure gradient is assumed to 
be constant. If the pressure gradient is assumed to be oscilla­
tory of the form 

(1 ) 

the MHO channel flow becomes oscillatory and such a study 
for a nonconducting plate MHO channel was made recently 
by Soundalgekar and Bhat. 8 But how the conducting plates 
affect the oscillatory flow, whose pressure gradient is repre­
sented by ( 1), has not been studied in the literature. Also, the 
heat transfer of such a flow has also not been studied in the 
literature. Hence it is now proposed to study the effects of 
electrically conducting plates of the channel on the oscilla­
tory flow and heat transfer. In Refs. 6 and 7 it was observed 
that the flow and heat transfer are affected by the sum of the 
electrical conductance ratios, 4>1 + 4>2 of the two plates, 
where 4>1 and 4>2 are the electrical conductance ratios of the 
two plates. However, in the present case, the transient veloc­
ity, the transient magnetic field, the amplitude, and the 
phase of the skin friction and the rate of heat transfer are 
found to be affected by the individual electrical conductance 
ratios. This is the most significant change observed due to 
the oscillatory flow character in the MHO channel. In Sec. 2, 

the mathematical analysis is presented and in Sec. 3, the 
conclusions are set out. 

2. MATHEMATICAL ANALYSIS 

Consider the unsteady flow of an electrically conduct­
ing,viscous, incompressible fluid between two infinite paral­
lel plates, separated by a distance of 2L. The x' axis is taken 
along the center line of the channel and the y' axis taken 
normal to it. A magnetic field of uniform strength is assumed 
to be applied parallel to the y' axis. The flow is now governed 
by the following equations: 

au' _ J..- ap' + v aV + f-lcHo aH ~ , (2) 
at ' pax' ay·2 41Tp ay' 

aH~ au' a2H~ 
--=Ho-+17--, (3) 

at' ay' ay,2 

and the boundary conditions are: 

u' =0, 

u'=o, 

dH' 
O'ld l --

x
- + O'H~ = ° aty' = + L 

dy' 

dH' 
0'2d2 __ x_ - O'H~ = ° aty' = - L. 

dy' 

(4) 

Here u' is the velocity in the x' direction, v the kinematic 
viscosity, f-lc the magnetic permeability, Ho the constant ap­
plied magnetic field,p the density, H ~ the induced magnetic 
field, t' the time, 17 = 1I41Tf-lcO'the magnetic diffusivity, O'the 
scalar electrical conductivity of the fluid, and 0' 1,0'2 the sca­
lar electrical conductivities of the upper and lower plates 
with thicknesses d l and d2 , respectively. 

To find the solutions, we now assume 

u' = ub + Eeiw't'u;, H ~ = h b + Eei(U't'h ; (5) 

and substitute (5) and (1) in Eqs. (2)-(4), equate harmonic and 
nonharmonic terms and get 

d 2ub f-lcHo dh b 
v--+----+A=O, 

dy,2 41TP dy' 
(6) 
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d 214; /-leHo dh; . , , 
V--+----+A =IUJU I , 

dy,2 41Tp dy' 

du~ d 2h ~ 
H-+1'l--=O, 

o dy' " dy,2 

du; d 2h;. , , 
Ho--+ 1/--2-= lUJ hi' 

dy' dy' 

and the boundary conditions are 

u~ = u; = 0 at y' = ± L , 

dh' 
uldl __ 0 + uh ~ = 0, 

dy' 

dh' 
u Id I __ I + uh ; = 0 at y' = L , 

dy' 

dh' 
u 2d 2 __ 0 - uh ~ = 0, 

dy' 

dh' 
u 2d2 __ I - uh; = 0 at y' = - L . 

dy' 

Introducing the following nondimensional quantities: 

y=y'/L, ho=h~/HoRm' hl=h;/HoRm' 

Rm = 41T/-leuLA *, A * =AL 2/v, uo = u~/A *, 

U I = u; /A *, M2 = /-l~H~L 2U//-l, UJ = UJ'L 2/V, 

tP - uld l tP2 = U~2, R
J 
= LA * 

1 - aL ' aL v 

in Eqs. (6)-(10), we have 

d 2UO + M 2 dho = _ 1 , 
dy2 dy 

d 2ho + duo = 0, 
dy2 dy 

d 2U I 2 dh l 1 . 
--+M -+ =IUJU I , 

dy2 dy 

d
2
h l dU I • Nh --+-=IUJ I' 

dy2 dy 

where N = Rm / Re, and the boundary conditions are 

140 = 141 = 0 aty= ± 1, 

dho + _1_ ho = 0 
dy tPl 

aty= + 1, 

dho __ 1_ ho = 0 
dy tP2 

aty= -1, 

dh I + _1_ hi = 0 
dy tPl 

aty= + 1, 

dh l __ I_hi = 0 
dy tP2 

aty = - 1. 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

Here R m , and M are, respectively, magnetic Reynolds and 
Hartmann numbers. 

The solutions ofEqs. (12)-(15) satisfying the boundary 
conditions (16) are derived as follows: 

140 = C2(cosh My - cosh M) , (17) 
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h C 
sinhMy y C 

0= - 2 M - M2 + 3' (18) 

141 = {X I (C4 sinh bly + Cs cosh b\y) +X2(C6 sinh b2y 

+ C7 cosh b2 y) + I}/iUJ, (19) 

hi = C4 cosh bly + C5 sinh bly + C6 cosh b2y 

+ C7 sinh b2 y , (20) 

where the constants bl> b2, C2, ... , C7 are defined in the Ap­
pendix. 

The steady velocity profiles were already studied in Ref. 
5. The velocity and induced magnetic field are given by 

14 = 140 + €eiW'ul(y) 
(21) 

h = ho + €eiw'hl(y)· 

We can write the expressions for 14 and h in terms of their 
fluctuating parts for UJt = 1T/2 as 

14 = uO-€Mi , 

h = ho - €h l ; , 

where 

(22) 

M, + iM; = 14 1, hi' + ihli = hi' (23) 

In order to get physical insight into the problem, we have 
calculated U and h from Eqs. (22) and these are shown in 
Figs. 1 and 2 respectively. 

It has been observed in Ref. 5 that the steady velocity is 
affected by the sum of the electrical conductance ratios of the 
two plates. But in the present case, the transient velocity has 
been found to be affected by the individual electrical conduc­
tance ratios of the plate. We observe from Fig. 1 that when 
tP I' tP2, M are constant, an increase in UJ has different effects. 
At small values of UJ, the transient velocity increases but at 
large values of UJ (-100), the transient velocity decreases. 
The effect of increasing Mis the same as in steady-state case 

~1 02 M W 

I 1.0 02 20 50 
IT 1 0 02 2 0 100 0 
m 1 0 02 60 50 
117 1 0 02 60 150 -04 

Y 50 06 20 5.0 
-llII III o 2 1.0 20 50 

1lll o 2 02 20 50 
lllll 5 0 0.2 20 50 
IX 1.0 06 20 50 03 
X 1 0 0.2 6 0 100 0 

FIG. I. Transient velocity profiles Rm/Re = 0.02, E = 0.2, wt = 7r/2. 
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~I ~, M W 
i 1 8 0.7 2 ~ 5 c, 

+02 

II o 2 1 ~ 2 ~ 50 
ill I 0 07 201000 
N 1 a 07 4 0 50 

(II Y 1 0 07 40 150 
/ Jl[ 5 0 06 Z.O 50 

'lIT 02 02 Z.o 5.0 
1ZIII 5.0 02 20 50 

I ill 
IX 1 0 o 6 7 a 50 
x: 1 a 02 6 0 100 0 

-02 

FIG. 2. Transient magnetic field Rm/ Re = 0.02. E = 0.2. wt = rr/2. 

and we observe that the transient velocity decreases and gets 
flattened. Also an increase in <PI or <Pzleads to a decrease in 
the transient velocity. The transient induced magnetic field 
is shown in Fig. 2. We observe from Fig. 2 that the transient 
induced magnetic field decreases with increasing (J) or M. 
But an increase in <Pzleads to an increase in h, whereas an 
increase in <PI leads to a decrease in h. 

From the velocity field, we now study the skin friction. 
It is given by 

, dU'1 7' = -Il-
dy' y'= ±L ' 

(24) 

which in view of (11) reduces to 

7' = 7"I( IlA *1 L ) = !!.!!...I 
dy Y= ± I 

duo I + i6}1 dUll =- €e -
dy y = ± I dy y = ± I 

(25) 

The numerical values of 7' m = duoldyly = _ I are calculated 
and they are shown in Table I. We observe from this table 
that the mean skin friction 7' m decreases with increasing 
<PI + <Pz· 

TABLE I. Values ofr",.IB I. tan a. 

M Rm/Re w <PI <P2 

2.0 0.02 5.0 0.2 1.0 
2.0 0.02 5.0 1.0 0.2 
2.0 0.02 5.0 0.6 5.0 
2,0 0.02 5.0 0.2 0.2 
2.0 0.02 10.0 0.2 1.0 
2.0 0.02 15.0 0.2 1.0 
2.0 0.01 5.0 0.2 1.0 
2.0 0.01 15.0 0.2 1.0 
4.0 0.Q2 5.0 0.2 1.0 
4.0 0.02 5.0 0.6 5.0 
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We can express 7' in terms of the amplitude and phase as 

7' = 7' m + €IB Icos(wt + a), 

where 

B - du I I = Br + iB; 
- dy Iy = ± I 

(26) 

and 
tan a =BJBr • 

The numerical values of IB I at the two plates are entered in 
Table I. They are affected by the individual conductance 
ratios of the plates. Let us denote the amplitude of the skin 
friction at the lower plate as IB II and that at the upper plate 
by IB2 1. We observe that an increase in <P2 or <PI leads to a 
decrease in both IB II and IB2 1. But an increase in (J) leads to a 
decrease in IB II and IB2 1· IB II, jB21 also decrease with in­
creasingM. 

The values of tan a, the phase of the skin friction, are 
also entered in Table I. We conclude from this table that, 
both being negative, there is always a phase lag. 

A. Energy equation 

The unsteady energy equation for the present case is 
given by 

aT' azT' (au')2 j; 
Pc ---k--+II - +-

P at' - ay'2 ,.... ay' a ' 
(27) 

which takes account of both viscous and Joule dissipation 
effects. 

We assume the solution in the form 

f) = 00 + ~(e;W"'f)l + e - ;'U'I'OI) 
2 

+ r (e2iW'I'02 + e - 2iW'I'02)' 
2 

(28) 

where 0 = T' - TI/(T2 - Ttl and - denotes the complex 
conjugate. Here TI and Tz are the temperatures of the lower 
and upper plates, respectively. In addition to (28), we write 
(5) as 

E·" ." u' = ub + _(e'WI u; + e-,wl u;) 
2 

and (29) 

Mean skin-
friction at IBd IB21 tanaat 
Y=1 Y= -1 Y= + I 

0.7128 0.4959 0.4991 - 0.7230 - 0.7056 
0.7128 0.4991 0.4959 - 0.7056 - 0.7230 
0.5581 0.4413 0.4492 - 0.5482 - 0.5168 
0.8481 0.5316 0.5316 - 0.8543 - 0.8543 
0.7128 0.3364 0.3421 - 0.9685 - 0.9438 
0.7128 0.2650 0.2713 - 1.013 - 0.9954 
0.7128 0.4954 0.4969 - 0.7198 - 0.7109 
0.7128 0.2661 0.2691 - 1.006 - 0.9933 
0.4704 0.4279 0.4313 - 0.3712 - 0.3414 
0.3113 0.3012 0.3086 - 0.2070 - 0.1470 
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€ ." . ,,-
iz =io + T(e'Wtil + e- lWt il)' 

Substituting (28) and (29) in Eqs. (27), equating harmonic and 
nonharmonic terms, and neglecting the coefficients of C, we 
get, in view of (11), the following equations in nondimen­
sional form: 

d 20o + PE [(dUo)2 + C (dU 1)(dU I)] 
dy2 dy 2 dy dy 

+M2PE(J~ + ~ Jill) =0, (30) 

dd~1 - iUJPO I = - 2PE(:0)(:I) - 2M 2PEJo J I , (31) 

d 202 _ 2iUJP02 = _ ~ PE [(dU I)2 + M2n] , (32) 
~2 2 ~ 

and two more equations for 81,82 similar to (31) and (32), 
respectively. Here P = /1cp/k is the Prandtl number, 
E = A *2/cp (T2 - TIl, the Eckert number, and 
J = iz/u/1cHo A *. 

The boundary conditions are: 

00(-1)=0, 00(1)=1, OI(±l)=O, 02(±1)=0.(33) 

Remembering thatJ = - dh / dy, and substituting for UO, U I' 
ho, and h I from (17)-(20), in Eqs. (30)-(32), and solving these 
under the boundary conditions (33), we have 

0o = Cs + C9y + PI(y), (34) 

where 

Pdy) = - PE {pll(y) + ~ PdY)} , 

PII(Y) = X9 cosh 2My + XIO cosh My + y2!2M2, 

Pdy) = XIS cosh bsY + X I6 sinh bsY + X 17 cosh b6y 

+ X I8 sinh b6y + X I9 cosh b7 Y + X 20 sinh b7 Y 

+ X 21 cosh bsY + X 22 sinh bsY + X 23 cosh b9y 

+ X 24 sinh b9y + X 2S cosh blOy + X 26 sinh blOy 

+ X 27 cosh b ll Y + X2S sinh b ll Y 

+ X 29 cosh b 12 y + X 30 sinh b 12 y, 

where the constants Cg,C9 , ... , X30,bs, ... ,b 12 are given in the 
Appendix. 

0 1 = C IO cosh b3y + CII sinh b3y - 2PEP2(y) , (35) 

where 

P2(Y) = X 31 sinh b l3 y + X 32 cosh b l3 y + X33 sinh bl4 y 

+ X 34 cosh bl4 y + X 3S sinh blsY + X36 cosh bls Y 

+ X 37 sinh b L6 y + X3S cosh bl6 y + X39 sinh b l Y 

+ X40 cosh bl Y + X41 sinh b2y + X42 cosh b2y· 

The constants are defined in the Appendix. 

O2 = C 12 cosh b4y + Cl3 sinh b4y - ~ PEP3(y) , (36) 

where 

P3( y) = X43 + X44 cosh 2b l Y + X4S sinh 2b l Y 
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+ X 46 cosh 2b2 Y + X47 sinh 2b2 Y + X 4S cosh b17 Y 
+ X49 sinh b 17 y + X so cosh blsY 
+ X SI sinh blsY. 
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The constants X43, ... , X SI are defined in the Appendix. 
Substituting for 00,01, and O2 in the expression for 0, we 

can get the expression for the temperature field. But we are 
interested in the rate of heat transfer. It is given by 

q' = _ k aT' I (37) 
ay' y' = ±L 

and in view of (11), Eq. (37) reduces to 

dO I dOol q- -
dy y = ± I dy y = ± I 

+€el("t_ . dOli 
dy y= ± I 

+ €2e2iwt d02
1 ' 

dy Y= ± I 

(38) 

where q = - q'L /k (T2 - Til. 

The mean rate of heat transfer is given by 

dOol q =-
m dy y= ± I . 

(39) 

From (34) and (39), we have calculated the expression for qm 
and the numerical values of qm are entered in Table II. We 
observe from this table that q m at the lower plate decreases 
with increasing <P2 whereas qm at the upper plate increases 
with increasing <PI' qm is not significantly affected by UJ at 
both the plates. An increase in E leads to an increase in q m at 
the lower plate and a decrease in q m at the upper plate. But 
an increase in M leads to an increase in q m at the upper plate 
and a decrease in q m at the lower plate. 

We can now express the expression for the rate of heat 
transfer in terms of the amplitude and phase as 

q = qm + €IQII cos(UJt + al) + ~IQ21 cOS(UJt + a 2), 
(40) 

where 

QI = dd
OI 

I = Qlr + iQli> 
Y y= ± I 

Q2 = dd
02

1 = Q2r + iQ2i , 
Y y= ± I 

(41) 

tan a I = QIi/Qlr> tan a 2 = Q2,.1Q2r· 

We have calculated the numerical values of IQII, IQ21, 
tan a I' and tan a 2 and their numerical values are entered in 
Table II. We observe from this table that an increase in <P2 or 
<PI leads to a decrease in the amplitude of the first harmonic 
of the rate of heat transfer. I Q II decreases with increasing UJ 
or M. The effects of<P" <P2, M, orUJ on IQ21, the amplitude of 
the second harmonic,are the same as in I Q II. 

The values of tan aI' the phase of the first harmonic, 
being negative, we conclude that there is a phase lag, whereas 
the values of tan a 2 being positive, there is always a phase 
lead. 

3. CONCLUSIONS 

1) The transient velocity increases with increasing UJ at 
small values of UJ, whereas at large values of UJ it decreases. 

2) The transient velocity decreases with increasing M, 
<PI' or <P2. 

3) The amplitudes of the skin friction at both the plates 
decrease with increasing <PI' <P2, M, or UJ. 
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TABLE II. Values ofqm' IQd. IQ21. tan a •• tan a 2 (p= 0.71 ). 

At the 
wall qm IQ.I tan a. IQ21 tan a2 

y= 

-I 0.5011 0.9745 X 10- 3 - 2.903 0.12ooX 10-3 2.443 
0.2 1.0 2.0 0.02 5 0.01 

+1 0.4989 0.9743 X 10- 3 - 2.830 0.1213XIO- 3 2.682 

-I 0.5011 0.9743 X 10-3 - 2.830 0.1213X 10- 3 2.682 
1.0 0.2 2.0 0.02 5 0.02 

+1 0.4989 0.9745 X 10- 3 - 2.903 0.1200 X 10- 3 2.443 

-I 0.5010 0.8533 X 10- 3 - 3.385 0.1032X 10- 3 2.800 
0.6 5.0 2.0 0.02 5 0.01 

+ I 0.4990 0.8546X 10- 3 - 3.356 O.ID44x 10- 3 3.130 

-I 0.5014 0.1189XIO-2 - 2.831 0.1426X 10- 3 1.971 
0.2 0.2 2.0 0.02 5 0.01 

+1 0.4986 0.1189X 10-2 - 2.831 0.1426X 10- 3 1.971 

-I 0.5011 0.3068 X 10- 3 - 8.006 0.2004 X 10-' 1.033 
0.2 1.0 2.0 0.02 IS 0.01 

+1 0.4989 0.3104X 10- 3 - 6.929 0.2132X 10-' 1.108 

-I 0.5023 0.1949 X 10-2 - 2.903 0.2401 X 10-3 2.443 
0.2 1.0 2.0 0.02 5 0.02 

+1 0.4977 0.1949X 10-2 - 2.830 0.2426X 10- 3 2.682 

-I 0.50\1 0.9732X 10- 3 - 2.881 0.12ooX 10-3 2.485 
0.2 1.0 2.0 0.01 5 0.01 

+1 0.4989 0.9729 X 10- 3 - 2.844 0.1206X 10- 3 2.602 

-I 0.5004 0.4760 X 10- 3 - 1.442 0.7595 X 10-' - 4.779 
0.2 1.0 4.0 0.02 5 0.01 

+1 0.4996 0.4743 X 10- 3 - 1.397 0.7534X 10-' - 3.740 

4) The mean rate of heat transfer at the lower plate de­
creases with increasing tP2 but increases with increasing tPI· 

5) The mean rate of heat transfer is not significantly 
affected by w at both the plates. 

of heat transfer at the upper plate and a decrease at the lower 
plate. 

6) An increase in E leads to an increase in the mean rate 
of heat transfer at the lower plate and a decrease at the upper 
plate. 

8) The amplitudes of the first and second harmonics of 
the rate of heat transfer at both the plates decrease with in­
creasing tP I, tP2, w, or M. 

7) An increase in M leads to an increase in the mean rate 

9) There is always a phase lag in the first harmonic ofthe 
heat transfer at both the plates whereas in the case of the 
second harmonic there is a phase lead. 

APPENDIX 

b t2= 1M2 + iw(N + 1) ± v[M 2 + iw(N + I)f + 4UJ2N j/2, b3 = ViwP, b4 = V2iwP, b5 = b l + bi' 

b6 = b l - bl, b7 = b l + b2, bg = b l - b2, b9 = b2 + bl, blO = b2 - bi' b ll = b2 + b2, bl2 = b2 - b2, 

bl3 = M + bl, b l4 = M - bl, b l5 = M + b2, b l6 = M - b2, b17 = b l + b2, big = b l - b2, 

a l = M 2b lbl , a2 = M 2b l b2, a3 = M2b2bi' a4 = M 2b2b2, 

C
I 

= -(l/M2+C2coshM), C2= -(2+tPI+tP2)/M!(tPI+tP2jMcoshM+2sinhMj, 

C3 = (4)2 - 4>dCI/2, C4 = (X07 - X4Xg)/(X3X7 - X4X6), C5 = (X~g - X06)/(X~7 - X4X6), 

C6 = - C~I sinh b l /X2 sinh b2, C7 = - (1 + X 1C5 cosh b l )/X2 cosh b2, Cg =! [1 - PI(I) - PI( - 1)], 

C9 = ~ [1 - PI(I) + PI( - 1), C IO = PE [P2(I) + P2( - I)]/cosh b3, Cll = PE [P2(I) - P2( - I)]/sinh b3, 

C l2 = PE [P3(I) + P3( - 1)]/4 cosh b4 , C l3 = PE[P3(I) - P3( - 1)]/4 sinh b4 , 

XI = b l (M
2 + iwN - b ~), X2 = b2(M

2 + iwN - b ~), X3 = (tPl - tP2)(b1X2 - X1b2)sinh b/X2, 

X4 = b1(tPl + tP2) cosh b l + 2 sinh b l - 1 b2(tP l + tP2)cosh b2 + 2 sinh b2jX1 cosh b l /X2 cosh b2, 

X5 = [b2(tP l + tP2)cosh b2 + 2 sinh b2j/X2 cosh b2, 
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X6 = b l (<1>1 + <1>2)sinh b l + 2 cosh b l - {b2(<1>1 + <1>2)sinh b2 + 2 cosh b2}XI sinh bl/X2 sinh b2, 

X7 = X3 cosh blsinh b l , Xs = b2(<1>1 - <1>2)/X2, X9 = CU4, XIO = 2C~/M2, X l1 = X IC4bli{J), 
- - - - 2 

X 12 = XICsbl/i{J), X13 = X2C6b2/i{J), X I4 = X2C7b2Ii{J), XIS = [Xl1X l1 + XI~12 + al(C4C4 + CsCs)]/2b s' 
- - - - 2 - - - - 2 Xl6 = [XIIX I2 +XI~II + al(C4CS + CsC4)]l2b s, X 17 = [XIIXII -XI~12 + a l ( - C4C4 + CsCs)]/2b 6 , 

- - - - 2 - - --
X I8 = [-XIIXI2 +XI~II + a l(C4CS - CsC4)]/2b 6 , X I9 = [XIIX 13 +XI~14 + a2(C4C6 + CsC7)]/2b;, 

- - - - 2 - - - - 2 
X 20 = [XllX I4 + XI~13 + a2(C4C7 + CsC6 )]l2b 7' X2I = [XllX 13 - XI~14 + a2( - C4C6 + CsC7)]/2b 8' 

- - - - 2 - - - - 2 
X 22 = [ - X IIX I4 + XI~13 + a2(C4C7 - CsC6)J/2b 8' X23 = [XI~II + X I4X I2 + a3(C6C4 + C7Cs)]/2b 9' 

- - - - 2 - - - - 2 
X 24 = [XI~12 + XI~ll + a3(C6CS + C7C4)]/2b 9' X 2S = [XI~ll - XI~12 + a3( - C6C4 + C7Cs)]/2b 10' 

- - - - 2 - - - - 2 
X 26 = [ - XI~12 + XI~l1 + a3(C6CS - C7C4)J/2b 10' X 27 = [XI~13 + XI~14 + a4(C6C6 + C7C7)]/2b 11' 

- - - - 2 - - - - 2 
X 2S = [XI~14 + XI~13 + a4(C6C7 + C7C6)]/2b II' X 29 = [XI~13 - XI~14 + a4( - C6C6 + C7C7)]l2b 12' 

- - - - 2 
X30 = [ - XI~14 + XI~13 + a4(C6C7 - C7C6)]/2b 12' 

In the following,J(D ) = D 2 - ;{J)P, g (D ) = D 2 - 2i{J)P. 

X 31 = C2M(XlI - MC4bl)/2/(b13), X32 = C#(XI2 - MCsbl)/2/(b13), X33 = C#(XlI + MC4bIl/2/(bI4), 

X34 = - C#(X12 + MCsbl)/2/(bI4 ),x3S = C2M(XI3 - MC6b2)/2/(b ls ), X36 = CzM(XI4 - MC7b2)/2/(bls ), 

X37 = C2M(XI3 + MC6b2)/2/(b'6)' X38 = - C2M(XI4 + MC7b2)/2/(bI6), X39 = - C4blll(bl), 

X40 = - Csblll(b l), X41 = - C6b211(b2 ), X42 = - C7b211(b2), 

X43 = [Xii -Xi2 +Xi3 - X~4 + M2( - C;b~ + C;b~ - C~b~ + C;b~))!2g (0), 

X44 = [Xii +X~2 +M2bi(C; +C;)]/2g(bl), X4S=(XllXI2+M2C4Csbi)/g(2bIl, 

X46 = (X i3 + X i4 + M 2C ~ b ~ )/2g (2b2), X47 = (X'~'4 + M 2C6C7b ~)/g (2b2), 

X48 = [XIIX 13 + XI~14 + M 2(C4C6b,b2 + CsC7blb2)]!g (bpj, 

X49 = [X11X 14 + XI~13 + M 2(C4C7b,b2 + CsC6blb2)J/g (bpj, 

XSO = [XlIX 13 - X'~'4 + M 2b,b2(CSC7 - C4C6)]/g (b ls), 

X S1 = [ - X IIX I4 + XI~13 + M2blb2(C4C7 - CsC6)]/g (b'8)' 
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Analysis of the effect of surfaces on the tricritical behavior of systemsa) 

G. Gumbs 
Division a/Chemistry. National Research Council a/Canada, Ottawa KiA OR6, Canada 

(Received 10 February 1982; accepted for publication 20 August 1982) 

The order parameter ¢ (z) of the ¢ 6-dominated tricritical free energy functional is calculated for 
film and half-space geometries. Extrapolation length (A ) boundary conditions are used to 
simulate the effect of the surface. Closed-form expressions for ¢ (z) of a film are given in terms of 
Weierstrass elliptic functions, or, alternatively, Jacobi eIliptic functions. For a half-space, ¢ (z) is 
expressed in terms of hyperbolic functions. In the absence of an external field, it is shown that the 
phase transitions which the system can undergo may be classified as ordinary (A > 0), surface 
(A < 0), and special (A = 00), like the ¢ 4 theory for second-order phase transitions. The critical 
exponents for the order parameter at the surface are determined for each type of phase transition. 
A discussion of the free energy for the surface phase is also presented. 

PACS numbers: 64.60.Kw, 64.60.Fr, 68.60. + q, 02.30. + q 

I. INTRODUCTION 

Progress in the theory of critical phenomena in bulk 
systems has been achieved with the use of the renormaliza­
tion group (RG) method. The effects of surfaces on phase 
transitions have also received considerable attention recent­
ly, but the lack of translational invariance has made the ap­
plication of the RG method much more difficult. Mean-field 
theories have also been applied to both bulk systems and 
systems with surfaces with considerable success. However, 
for a film of finite thickness even a mean-field theory (MFT) 
calculation of the correlation function above the critical tem­
perature or of the order parameter in the ordered phase can 
be very involved. 1 

The phenomenological theory for systems with a tricri­
tical point, such as occurs in He3 _He4 mixtures, has been the 
subject of much discussion recently. However, with the ex­
ception of Binder and Landau,2 all these studies have been 
confined to bulk systems.3-9 In particular, a scaling theory 
for tricritical behavior has been developed by Riedel and 
Wegner. 3 These authors3 as weIl as Stephen et al. 8 have not­
ed that MFT for tricritical points is correct in three dimen­
sions, apart from logarithmic corrections. (Similar logarith­
mic corrections are also needed in four dimensions for the 
MFT of the Ising spin model. 10) Tricritical behavior in a 
metamagnetic single crystal, in the presence of an ordering 
field, has also been discussed recently. However, the Hamil­
tonian needed 11 is considerably more complicated than that 
of Riedel and Wegner. 

In this paper, we consider the symmetrical tricritical 
point of Riedel and Wegner3 in the presence of a surface. The 
system is described by an energy functional which contains 
extra terms arising from the surfaces at z = 0 and z = L: 

F = J dx [ro¢ 2(X) + 5 ~ [V¢ (xW + g4¢ 4(X) + ~6¢ 6(X) 

+ (5 ~/A )[o(z) + o(z - L )]¢ 2(X) l. (1.1) 

Here ¢ (x) is a scalar order parameter and ro 7 - 1 where 
7 T /T~F( 00), with T~F( 00) equal to the mean-field transi­
tion temperature for the bulk. x (XII ,z) is a spatial vector 

alNational Research Council of Canada No. 20489. 

within the film, with XII paraIlel to the surface. The integra­
tion over z in (1.1) is from 0 to L, and 50 is a temperature­
independent length scale for the system. A is an extrapola­
tion length whose significance is such that if the value of ¢ 
were extrapolated a distance A beyond each surface, ¢ would 
vanish there. This type of boundary condition has been used 
in many papers (see, for example, the references given by 
Cordery and Griffin 12) which have studied the effects of a 
surface on the phase transition of spin systems using the 
continuous spin Ginzburg-Landau-Wilson (GLW) Hamil­
tonian. The coefficient g4 in (1.1) depends on temperature as 
weIl as the interactions causing tricriticality.3 At the tricriti­
cal point, g4 vanishes whileg6 is finite and positive. Below the 
critical temperature Tc ' in the mean-field treatment of the 
problem, g4 is set equal to zero while the ¢ 6 term is retained 
in the energy functional (1.1).13 Above Tc ' when fluctuations 
are ignored, g4 and g6 are set equal to zero, and the two-point 
correlation function for a bounded system with a tricritical 
point is equal to that derived previously in MFT.14 In the 
present paper, we derive expressions for the order parameter 
of the ¢ 6 -dominated, tricritical free energy functional for 
film and half-space geometries. Owing to translational in­
variance paraIlel to the surface, ¢ depends only on the vari­
ablez. 

With the free energy (1.1), we show that the system has 
an ordinary, surface, and special transition, depending on the 
value of the extrapolation length A. This classification fol­
lows that of Bray and Moore 15 and Lubensky and Rubin 14 

for usual second-order phase transitions. For the ordinary 
transition, A > 0 and the system orders at the bulk transition 
temperature. For the surface transition, the surface orders 
spontaneously at a higher temperature than the bulk. For the 
special transition, A = 00 and the system orders at the bulk 
transition temperature. 

II. THE ORDER PARAMETER FOR A FILM BELOW Tc 

Within MFT, the order parameter for a film is obtained 
by minimizing the free energy (1.1). Doing so and setting 
g4 = 0, we obtain 

d 2", (z) 
5~ -d"'o = ro¢(z) +g6¢5(Z), 

z" 
(2.1) 
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with the boundary conditions 

d¢(z) -~"'( ) -0 - 'f' Z, z- , 
dz A 

(2.2a) 

d¢(z) = -~¢(z), z=L. 
dz A 

(2.2b) 

With the use of these equations, one may show that in ther­
modynamic equilibrium the free energy is given by 

F [¢ 1 = - ~6 iL 

dz ¢ 6(Z). (2.3) 

Multiplying the differential equation (2.1) by d¢ (z)/ dz 
and then integrating over z, we obtain 

(2.4) 

where R is independent of the z coordinate. In general, the 
order parameter is either symmetric (S) or anti symmetric (A) 
about the midplane z = L 12 of the film. From symmetry 
considerations, ¢ (z) satisfies d¢ (z)1 dz = 0 at z = L 12 for the 
S solution, whereas ¢ (z) satisfies ¢ (z = L 12) = 0 for the A 
solution. Define a function ¢(z) in terms of ¢ (z) by the equa­
tion 

¢ 2(Z) = ¢~/[¢(z) - c], (2.5) 

where c is independent of z. Substituting (2.5) into (2.4), we 
obtain after a little algebra 

5~ (d~;Z) r = (;~) ~(z) + 4(ro - ~:) ~(z) 

- 4c( 2ro - ~:) ¢(z) 

+ 4(roc
2 + ~ g6¢ 6 - ~ c3

). (2.6) 
3 ¢~ 

Choose c so that the ~ term in (2.6) vanishes. This gives 

c = ro¢~/3R. (2.7) 

Also, choose R to be 

R= -jg6¢~/(3c+1). (2.S) 

Therefore, ¢ ~ = ¢ 2(Z = L /2) for a symmetric solution, and 
we must have ¢ ~ positive for the S case. For an antisymme­
tric solution, however, ¢ ~ might be positive or negative. Sub­
stituting (2.7) and (2.S) into (2.6), we obtain 

~ (d¢(V))2 = ~(v) _ 3c2¢(v) - (1 + 3c - 2c3 ), (2.9) 
4 dv 

where we have changed variables from z to v, with 

v = (R 1/2/¢050)(Z - L 12). (2.10) 

In our notation, ¢0=1¢ ~ 11/2. 

The differential equation for ¢ in (2.9) is the same as that 
satisfied by the Weierstrass elliptic function. 16 The roots el , 

e2 , and e3 of the cubic equation 

are 

203 

~-3czz-(1+3c-2c3)=0 (2.11) 

1 + C - -- + -- and (
l+C) .j1/2 

, 2 2 (
1 + C) .j1/2 

- -2- --2-' 

(2.12) 
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where.j is the discriminant for the Weierstrass function and 
is given by 

.j = 3(3c + l)(c - 1). (2.13) 

For definiteness, we separate the two cases correspond­
ing to.j positive and negative, and adopt the following nota­
tion: 

Case (i): If.j < 0, we choose ez = 1 + C and denote the 
remaining (complex) roots by e l and e3 • 

Case (ii): If .j > 0, we arrange the roots so that 
el > ez > e3• Therefore: (a) for c> - !, i.e., C E [-!, - j) or 
(1,oo),wehave 

(
1 + C) .j1/2 

e l = 1 +c, e2 = - -2- +-2-' 

e3 = - C ; C) _.j ~/Z; (2.14) 

(b) for C < -! 

e l = _ (1 ; C) +.j ~/2, ez = 1 + c, 

(
1 + C) .j1(2 

- -- ---. 
2 2 

(2.15) 

The solutions of(2.9) depend on the values of ¢ ~ and c. 
We now turn to calculating these solutions which are conve­
niently expressed in terms of Jacobi elliptic functions. 

Region 1: ¢~ > 0, C < - i 
For c < - j, .j > 0 and there are four possible solutions. 

Introducing the variable u which is defined by 

u = (l/¢050) ~(el - e3 )R (z - L 12) 

and defining the modulus k by 

k ==~(e2 - e3)/(e l - e3), 

the solutions are l7 

¢ ( u) el - e2 

4 ~el _ e
3 

= e l 
- dnZ(u,k)' 

(2.16) 

(2.17) 

(2.1Sa) 

(2.1Sb) 

(2.1Sc) 

(2.1Sd) 

Here sn, cn, and dn are the sine, cosine, and delta amplitude 
Jacobi elliptic functions, respectively. sn(u) is antisymmetric 
whereas cn(u) and dn(u) are symmetric in the argument 
u--+ - u. Therefore, since u is related to z by (2.16), the solu­
tion (2.18a) yields a solution for ¢ (z) in (2.5) which is antisym­
metric about the midplane of the film. On the other hand, 
(2'. lSb)-(2. 1Sd) yield symmetric solutions. 

With the use of (2.5) and ¢ (z = L /2) = ¢o for the sym­
metric solution, it is straightforward to show that for the 
symmetric case 

¢(O) = 1 + c. (2.19) 

However, setting u = 0 in (2.1Sb)-(2.1Sd), we find that 
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tPz(O) = el , tP3(0) = e3, and tP4(0) = ez. (2.20) 

Therefore, referring to (2.14) and (2.15), we find that for the 
symmetric case, tPz is the solution for c E ( -!, - j), tP4 is 
the solution for c < - ~, and tP3 must be discarded. 

Substituting (2.18b) into (2.5), we obtain the symmetric 
solution for the order parameter, where c E (--!, - i): 

tPs(Z) = tPocn(u,k )/[(e l - ez) - (c - ez)cnZ(u,k )]IIZ. (2.21a) 

Since (2.21a) satisfies the boundary conditions (2.2), we 
have l8 

(e l - e3 )1/2(e l - ez)R 1/2sc(uo,k )dn(uo,k) 

= (1,60501 A )[(e l - e2) - (c - ez)cnZ(uo,k)], (2.21b) 

where 

(2.21c) 

For c < -~, the symmetric solution is obtained from (2.5) 
and (2.18d): 

tPs(z) = tPodn(u,k )/[(e l - c)dn2(u,k) - (e l - ez)]1/2. 
(2.21d) 

Imposing the boundary conditions (2.2) on (2.21d), we have 

(e l - eilZ(e l - ez)k 2R 1/2sn(uo,k )cd(uo,k) 

= (1,60501 A )[(e l - e2) - (e l - c)dnz(uo,k )]. (2.21e) 

Substituting (2.18a) into (2.5), we obtain the antisymmetric 
solution for 1,6 when c < - j: 

tPA (z) = tPosn(u,k )/[(e l - e3 ) - (c - e3 )snZ(u,k )]I/z. (2.22a) 

We must have from (2.22a) and (2.2) 

(e l - e3 )
3/2R 1/2cs(uo,k )dn(uo,k) 

= - (1,60501 A H(e l - e3 ) - (c - e3 )snZ(uo,k )). (2.22b) 

In this region, the values of c, R, and 1,60 are determined by 
(2.7), (2.8), and (2.21b) or (2.21e) for the symmetric solutions 
and from (2.7), (2.8), and (2.22b) for the antisymmetric solu­
tion. Substituting these values into (2.21a), (2.21d), and 
(2.22a), we obtain the solutions for 1,6 (z) in terms of the origi­
nal parameters in (2.1) and (2.2). 

Fore < - j, we deduce from (2.8) thatR > o sinceg6 > 0 
and 1,60 is real (1,6 ~ > 0) as shown in Fig. 1. Therefore, in region 
l,ro<O. 

Regions 2 and 3: tP~ <0, - i <C< 1 

For this range of values for c, the discriminant ..1 < 0, 
and there are two possible solutions for tP which satisfy (2.9). 
These are 

tPl -- = e2 - H2 , ( 
u' ) (cn(u' ,K) )2 

H i/2 sn(u',K)dn(u',K) 
(2.23) 

.1. (_U'_) = e _ H (sn(U',K)dn(U',K))2 
'1'2 H 1/2 2 Z ( /) , 

2 cn u ,K 
(2.24) 

where (2.24) is obtained from (2.23) by replacing u/ by either 
u/ + K oru/ + iK /, whereK andK / arecompleteellipticinte­
grals. 16 We have now introduced 
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H~=lel-e212=H9(1 +cf+ 1..11]' 

u/ = (1/1,6050) ~HzR (z - L 12), 
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(2.25a) 

(2.25b) 

CD :® cp~ CD 0 
I 
I 
I 

R>O : R<O R<O R<O 
I 

ro<O I r >0 
I 0 ro<O '0<0 

S,A S,A S,A S 

_1.1 0 II c 

® 3: ® ® I CO I 
I I 

I 
no solutions R>O R>O I no solutions 

I 
I 

ro>O '0<0 I 
I 

I I 
I I 
I A A I 

S= symmetric mode A=: anti symmetric mode 

FIG. I. Summary of the results for the order parameter. within mean-field 
theory. of a film. The solutions are presented in Sec. II. 

(2.25c) 

Referring to Fig. 1, we see that in regions 2 and 3, 1,6 ~ < O. 
But, for a symmetric solution 1,60 has to be real. Therefore, for 
this range of values of with 1,6 ~ < 0, tPz must be discarded and 
the solution is antisymmetric. Therefore, we have 

[ ( 
cn(u',K) )2 ] -1/2 

rP A (z) = 1,60 H2 - 1 , 
sn(u',K)dn(u',K) 

where, upon substituting (2.26a) into (2.2), 

H~/2R I/Z[I-2KZsn2(u~,K)+K2sn4(u~,K)] 

= - (1,60501 A )sc(u~ ,K)dn(u~ ,K) [H2cn2(u~ ,K) 

- sn2(u~ ,K)dn2(u~ ,K)]. 

Here 

u~=(L 12tP050)(H2R )IIZ, 

(2.26a) 

(2.26b) 

(2.26c) 

and we stress that 1,60= 1 1,6 ~ 11/2. The values of c, R, and 1,60 are 
now given by (2.7), (2.8), and (2.26b). Equation (2.26a) thus 
gives the solution for 1,6 in terms of the parameters in (2.1) and 
(2.2). 

From (2.7), we find that in region 2, ro> 0, but ro < 0 in 
region 3. From (2.8), we deduce that R > O. 

Regions 2/ and 3/: tP~ > 0, - i < C < 1 

Here the discriminant ..1 of the Weierstrass function is 
negative and the solutions may be obtained from Eqs. (2.23) 
and (2.24) by making the replacement u/~iu'. That is (see 
8.153 of Gradshteyn and Ryzhik I6

), the solutions are 

( 
u/ ) (cn(u/,K/))2 

tPl H i/2 = e2 + Hz sn(u',K/)dn(u',K/) , 

.1. (_u/_) = e H (sn(U',K/)dn(U',K/))2 
'1'2 H 112 Z + Z ( / /) , 

2 cnu,K 

where the argument and modulus are, respectively, 

u/ = (1/rP05o) {ilJJff (z - L 12), 

K'=~~ - 3e2/2Hz. 
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(2.27b) 

(2,27c) 

(2.27d) 
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Since u' is related to thez coordinate by (2.27c), and ¢ ~ > 0 in 
this region (see Fig. 1), "'I ("'2) gives an S (A) solution for ¢. 
Note that "'2 satisfies the condition (2.19) for a symmetric 
solution. Substituting (2.27b) into (2.5), we obtain 

¢s(z) = ¢o [1 + H2(sn(u"K')~n(~"K') )2] -112. (2.28a) 
. cn(u ,K) 

Substituting (2.28a) into the boundary conditions defined in 
(2.2), we obtain 

H~/2IR 11/2SC(U~,K')dn(u~,K') 

X [1 - 2K'2sn2(u~,K') + K'2sn4(u~,K')] 
= (¢osof A )[ H2sn2(u~,K')dn2(u~,K') + cn2(u~,K')], 

(2.28b) 

where 

u~=(L /2¢oSo)(H2IR 1)112. (2.28c) 

To get the antisymmetric solution, we substitute (2.27a) into 
(2.5) and obtain 

[ ( 
cn(u' ,K') )2] -1/2 

¢ A (z) = ¢o 1 + H2 . (2.29a) 
sn(u' ,K')dn(u' ,K') 

Imposing the boundary condition (2.2) on (2.29a), we have 

H~I2IR 11/2 [1 - ~sn2(u~,K') + K'2sn4(u~,K')] 
= - (¢osof A )[ sc(u~ ,K')dn(u~ ,K')] [H2cn2(uo ,K') 

+ sn2(u~ ,K')dn2(u~ ,K')]. (2.29b) 

Equations (2.7), (2.8), and (2.28b) or (2.29b) determine the 
values of c, R, and¢o in this region. As shown in Fig. 1, ro > 0 
in region 2', but r 0 < 0 in region 3'. We have R < 0 for this 
case. These results agree with (2.7) and (2.8). 

Region 1': lP~ > 0, C> 1 

For c > 1, the discriminant Ll of the Weierstrass func­
tion is positive. Also, in this region, ¢ ~ > 0 and, therefore, 
from (2.8), R < O. The solutions may be obtained from those 
in region 1 with the replacement u-+iu. Making use of the 
results in 8.153 of Gradshteyn and Ryzhik,16 the solutions 
are 

where 

u = (l/¢oSo) ~I - e3 )IR I (z - L 12), 

k '=~(el - e2)/(e l - e3)· 

(2.30a) 

(2.30b) 

(2.3Oc) 

(2.30d) 

(2.31a) 

(2.31b) 

For c> 1, el, e2, and e3 are given by (2.14). Therefore, 
(e l - c)sn2(u,k') - (e l - e3) = sn2(u,k') - (e l - e3) <O.That 
is, "'I in (2.30a) does not give a real value for ¢ (z) in (2.5) since 
¢ ~ > O. The solution for ¢, therefore, cannot be antisymme­
tric. From Eqs. (2.30b)-(2.30d); we have "'2<e l , "'3<e3, and 
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"'4>eZ' Setting u = 0 in these equations, we obtain 

"'2(0) = el = 1 + c, "'3(0) = e3, "'4(0) = e2' (2.32) 

Since a symmetric solution must satisfy (2.5), only "'2 is ac­
ceptable and the solution for c> 1 and ¢ ~ > 0 is therefore 

¢s(z) = ¢of[(e l - e2)cn2(u,k') - (c - e2)] 112. (2.33a) 

The boundary condition (2.2) and (2.33a) give 

(e l - e3)1/2(e l - e2)IR 11/2sn(uo,k ')cn(uo,k ')dn(uo,k') 

= - (¢osof A )[(el - e2)cn2(uo,k') - (c - e2)], (2.33b) 

where, in (2.33b) 

(2.33c) 

Equations (2.7), (2.8), and (2.33b) together determine the val­
ues of c, R, and ¢o' Moreover, from (2.7) we find that ro < O. 

In region 1" of Fig. 1, ¢ ~ < 0 and c > 1; however, for 
c> 1, the discriminant in (2.13) satisfies Ll > 0 and the solu­
tions for'" in this region are given by Eqs. (2.18). One may 
deduce from (2.18a) that "'I>e l, where el = 1 + c from 

(2.14). That is, "'I > c. Therefore, since¢ 2 = I¢ ~ I/(e - "'), "'I 
does not give a real value for the order parameter, i.e., there 
is no antisymmetric solution. ¢o has to be real for there to be 
a symmetric solution. Therefore, we conclude that, in region 
1", there are no real solutions for ¢ (z). 

In region 1/1/ of Fig. 1, where ¢ ~ < 0 and c < -!, the 
discriminantLl > 0 and the solutions for'" are given by (2.18). 
However, the solution for ¢ cannot be symmetric, since 
¢ ~ < 0 and thus (2. 18b)-(2. 18d) must be ruled out. For the 
same reason given in our considerations of region 1", "'1 does 
not give a real value for ¢ in region 1"'. We conclude, there­
fore, that there are no real solutions for ¢ (z) in region 1"'. 

In our discussion above, we did not consider the case for 
which c = - j. This value for c needs special consideration. 
Eliminating R from (2.7) and (2.8), we obtain ¢ ~ 
= ro(3c + 1)16g6 • Thatis¢ovanisheswhenc = - j. For this 

value of c, it follows from (2.13) that Ll = 0 and from (2.12) 
that el = j, e2 = e3 = - j. Using the result in 8.1698 of 
Gradshteyn and Ryzhik,16 we find that for c = -! (Ll = 0) 

'" (z) - - I + 1 (2 34a) 
s - ~ cos2((z - L 12)( - roe)I/ 2/So) . 

is the symmetric solution for (2.9) and 

"'A (z) = - l + 1 (2 34b) 
, sin2((z - L /2)( - rOe)I/2/so) . 

is the antisymmetric solution. Here rOe 
=Te(L )lT~F( 00) - 1, where Te(L) is the transition tem­
perature for a film. 

Making use of(2.34) in (2.5), assuming that ¢o is infinite­
simal, and then substituting the result into the boundary 
conditions (2.2), we obtain (after cancelling ¢o) 

( - roc)1I2tan(~0 ( - roe)I/2) = ~ (2.35a) 

from (2.34a) and 

(2.35b) 

from (2.34b). There are two cases to consider, depending on 
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the sign of rOc' If rOc < 0, the argument of the tangent and 
cotangent in (2.35) is real, and there are an infinite number of 
solutions for these equations. However, the physical Te cor­
responds to the largest value. With A > 0, this comes from 
Eq. (2.35a). That is, for A> ° the reduced transition tem­
perature is 

Te(L )lT~F( 00) = 1 - xL 
where Xs is the smallest solution of 

xs tan(Lxs/2so) = soiA. 

(2.36a) 

(2.36b) 

For A < 0, it is (2.35a) with roc> ° which gives the largest 
possible value for Te. That is, for A < 0, the reduced transi­
tion temperature is 

Te(L)/T~F(oo)= 1 +x~, 

where Xs is the solution of 

xstanh(Lxs12so) = soilA I· 

(2.37a) 

(2.37b) 

These results agree with the well-known results for the tran­
sition temperature of a film, within MFT, for the usual sec­
ond-order phase transitions. 

It is a simple matter to verify that (2.36) and (2.37) may 
be obtained by taking the limit c--+ - ! from within either 
region 1,2, or 2'. It also becomes apparent, when taking this 
limit, that for the system to have an order-disorder transi­
tion, region 1 favors a positive value of the extrapolation 
length A, whereas regions 2 and 2' favor a negative value of 
A. 

For c = 1, the discriminant L1 = 0. The solutions for 
¢ (z) may be constructed from the degenerate results for the 
Weierstrass function, as we did for c = - j. This completes 
our discussion of the solution of Eq. (2.1) subject to the 
boundary condition (2.2). 

III. THE ORDER PARAMETER FOR THE HALF-SPACE 
BELOW Tc 

The calculation for the order parameter for a film of 
finite thickness is complicated by the fact that the value of R 
in (2.4) is given implicitly by a set of three coupled equations 
involving the boundary conditions (2.2). Furthermore, it 
does not help to rewrite (2.4) as an integral equation since, for 
arbitrary values of R, we cannot do the integral analytically 
[we had to make use of the transformation (2.5)]. However, 
for the semi-infinite geometry (z:>o) the calculation is consid­
erably simplified. In this case, we take the limit L--+ 00 and 
satisfy the boundary condition (2.2a) at z = ° only. There is 
no need to separate the solutions into symmetric and anti­
symmetric cases for this geometry. In addition, the value of 
R is obtained from the condition that d¢ (z)/dz = ° 
= d 2¢ (z)/dz2 at z = 00. With this value of R, we now show 

that (2.4) is easily integrated to give ¢ (z) explicitly. The analy­
sis proceeds in much the same way as the ¢ 4 theory. 19 

Setting d 2¢ (z)/ dz2 = 0 at z = 00 into Eq. (2.1), we find 
that¢ (z = 00) = Oor( - rO/g6 ) I 14. These two values for¢ (00) 
lead to the following considerations. 

Case (i): ¢I( 00 ) = 0 

Here the extrapolation length A < ° and the tempera­
ture must satisfy 1 < T < T" where T,-1 + S 61 A 2. In this 
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case R = ° and (2.4) may be rewritten as an integral: 

z 14> I
Z) 1 

-=- d¢----~ 
So 4>(0) ¢(rO+!g6¢4)1/2' 

(3.1) 

where the minus sign on the right-hand side of(3.1) is chosen 
since, for A < 0, the value of ¢ at the surface is larger than in 
the bulk. We now change variables in (3.1) from ¢ to 0, with 
¢ 2 = (rol!g6)I!2 sinhO; 0 is real since ro> O. After a straight­
forward calculation, we obtain 

where 

(3.3a) 

and 

s +(T) sol(T - 1)1/2. (3.3b) 

From (3.2), we find that for z>s + 

( 
12(Ts - T)(T - 1) )1/4_ 

¢ (z)z g6[soilA 1 + (T _ 1)112]2 e z/s,. (3.4) 

Therefore, the surface orders at Ts [see (3.3a)] while the bulk 
orders at the mean-field bulk transition temperature. That is, 
for A < 0, the surface orders spontaneously at a higher tem­
perature than the bulk. This behavior has also been shown 
for usual second-order phase transitions and is classified as a 
surface transition. 14.15 

Case (ii): ¢I( 00) = ( - f olg,P'4 

Forthiscase,AzO and T < 1 (i.e., ro <0). We can express 
R of (2.4) in terms of ¢ (00). Substituting this value for R into 
(2.4), we rewrite this equation as an integral over ¢: 

z 1 14> I
Z) 1 

So = (g~3)1/2 4>(0) d¢ [¢2(00)_¢2][¢2+2¢2(00)]1/2' 
(3.5) 

Changing the variable of integration from ¢ to 0 where 
¢ = vL ¢ (00 )sinh 0, one may easily do the integral in (3.5), 
using 2.441(3) of Gradshteyn and Ryzhik. 16 The result is 

¢ (z) = vL ¢ (oo){ [v1 + 3tanh(z/s _)tanh 00]2 _ I} -1/2, 
tanh(z/s _) + v'3tanh 00 

where 

S -(T)-so/(I - T)1/2 

and 00 is given by 

¢ (0) = vL ¢ ( 00 )sinh 80 , 

(3.6a) 

(3.6b) 

(3.7) 

With the use of the boundary condition (2.2a) at z = 0, to­
gether with the value of ¢ ( 00 ), one finds that x=sinh200 is 
given by 

x' - iQx + ! = 0, 

where 

(3.8) 

(3.9) 

The three roots of the cubic equation (3.8) are real: Two 
are positive in value and the other negative. The two positive 
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roots which are physically meaningful are 

XI = Q 1/2COS(C 13), 

X 2 = ~Q 1/2[vJsin(C 13) - cos(C 13)], 

where C satisfies rr12<C < rr and is given by 

(3.1Oa) 

(3.1Ob) 

cosC= _Q-3I2. (3.11) 

Thus, for r 0 < 0, ifJ (z) has two solutions: One corresponds to 
A > 0 and the other to A < O. We next identify these two 
solutions. 

In the limit ro----+O-, C is given by 

C;::;rr12 + (- ro)3/2(IA I/So)3. (3.12) 

Making use of (3.12) in (3.10), we obtain in this limit 

vJ ( 1 )1!2( So ) 
xl;::;T - ro !AT ' (3.13a) 

( 1..1 1)2 
X 2 ;::;j( - ro) To . (3.13b) 

Substituting (3.13) into (3.7), we obtain for ro----+O-

ifJ (0);::; - _0_ , for XI' (
3 )1/4 (s )112 

g6 1..1 I 
(3.14a) 

ifJ (0);::;(~)1/4 (ill) ( - ro)3/4, for X2. 
9g6 So 

(3.14b) 

That is, in the limit 7----+ 1 - , ifJ (0) remains finite [see (3. 14a)] or 
tends to zero [see (3. 14b)]. However, we showed above that, 
for negative extrapolation length, the surface orders at a 
higher temperature than the bulk. Therefore, when 7 < 1, the 
X I solution in (3.1Oa) corresponds to A < 0, whereas the X 2 

solution in (3.1Ob) corresponds toA >0. From (3.14b) and 
the definition for ifJ ( 00 ), we find that, for A > 0, the surface 
layer and the bulk order at the mean-field transition tem­
perature T~F( 00). This corresponds to the ordinary transi­
tion, discussed for usual second-order phase transitions. 14.15 

If we now letA-~oo in Eq. (3.9), we find that Q = 1. In 
this case, Eq. (3.8) has a root atx = - 1 and a double root at 
X = ~. The negative root must be ruled out on physical 
grounds. Substituting the value for the double root into (3.7), 
we obtain 

ifJ(O) = ifJ(oo). (3.1Sa) 

For X = ~, tanh ()o = ± l/vJ. Substituting into (3.6a), we 
obtain the result 

ifJ(z) =ifJ(O), (3.1Sb) 

for 7 < 1 and A = 00. That is the order parameter isflat right 
up to the surface and the system orders at the bulk mean­
field transition temperature. Following Bray and Moore, IS 

we refer to this as the special transition. 
Figure 2 is a plot of ifJ (z)1 ifJ (0) for 7> 1 and A < 0, using 

the result in (3.2). Figure 3 is a plot of ifJ (z)/ifJ (0) in (3.6) for 
7 < 1: Curve I corresponds to the A < 0 and curve II to A > O. 

The surface order parameter ifJ (0) varies as (Tc - Tt' as 
T ----+T c- . For the surface transition, it follows from (3.3a) 
that 

fi l = 1· 
Equation (3.14) gives 

fil = i 
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(3.16a) 

(3.16b) 
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FIG. 2. The order parameter for a surface transition (A < 0), for a half­
space, as a function of distance from the surface at z = O. The plot is based 
on the result in (3.2). 

for the ordinary transition and (3.ISa) gives 

fit =! (3.16c) 

for the special transition. For the surface transition, the ex­
ponent fi is equal to its bulk value. This result is expected 
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FIG. 3. The order parameter for a half-space, as a function of the distance z 
from the surface at z = O. The plots are based on the results in (3.6)-(3.11). 
Curve I corresponds to a surface transition (A < 0) and curve II to an ordi­
nary transition (A > 0). 
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since the exponent for the surface of a d-dimensional system 
is equal to the exponent for a (d - 1 )-dimensional system; in 
MFT the exponents are independent of dimensionality. 15 

Although the system orders at the bulk transition tempera­
ture for both the ordinary and special transitions, the ther­
modynamic exponent /3 is not the same for these two types of 
phase transition. The difference is due to the relative value of 
the mean field in the surface layer compared to that in the 
bulk. 

IV. THE FREE ENERGY FOR THE SURFACE (A < 0) 
PHASE WHEN L = 00 

When we substitute (3.2) for <p (z) into (2.3), we obtain the 
free energy for a half-space with A < 0 and 1 < r < rs 
-1 +t~/A 2: 

F ( ) - _ I IA 13t <p 6(0) ('" dz 1 
s r - jg6 + (t 2+ _ A 2)3/2 )0 sinh3(z + xo) , 

(4.1) 

where 

xo=arctanh( IA \It +). (4.2) 

Doing the integration in (4.1), we obtain 

r - I IA 13 1: <p 6(0) [COShxo 
Fs( )-7$6 ~+ (1:2 A2)3/2' h2 

~ + - sm Xo 

_ arctan( 1 )]. (4.3) 
coshxo 

From (4.3), one finds that near r s , the surface free energy 
behaves asymptotically as 

Fs(r)-(rs - rf/2. (4.4) 

Since the specific heat Cv = - ref F / ar 2
, we find from (4.4) 

that the critical exponent as for the surface specific heat is, 
withinMFT, 

as =~. 

Josephson's law 

vd= 2 -a, 

(4.5) 

(4.6) 

which involves the space dimension d, relates the exponent v 
for the correlation function and the exponent a for the spe­
cific heat. Substituting v = ~ from (3.4) and a = ~ from (4.5), 
one finds that Josephson's law is violated for the surface 
phase when the exponents have their classical value, except 
for d = 3. When the contribution from fluctuations is in­
cluded, the corrected critical exponents only satisfy Joseph­
son's law for d < 3. In fact, the width of the region in which 
the nonclassical exponents are observed shrinks to zero as d 
approaches 3. 
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V. CONCLUSIONS 

We have presented closed-form solutions, within mean­
field theory, for the order parameter <p (z) of the <p 6 -dominated 
tricritical free energy functional for film and half-space geo­
metries. We have discussed the solutions whose properties 
depend on the value of the extrapolation length. 

Our results may be applicable in calculating the order 
parameter profile for a half-space, using the renormalization 
group € expansion. 20 Bray and Moore21 have also used the € 

expansion 1'0 determine the shift exponent A. for usual sec­
ond-order transitions of a thick film. Their technique may be 
used to calculate A. for a system having a tricritical point. 
These calculations are presently being done, and the results 
will be reported elsewhere. 
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A derivation is supplied for a functional relation between the Fuchs energy c and the Madelung 
energy S for a Yukawa-Wigner solid (YWS) in which the usual uniform background of a Wigner 
solid (WS) is replaced by a periodic array ofYukawa charge distributions with variable "ripple" 
parameter A allowing the WS and the empty lattice in the limits of small A and large A, 
respectively. It is the zeros of Llc, and not of LlS, that are relevant for structural transitions 
between two lattices. It is known that 2cwS = S WS, and Medeiros and Mokross incorrectly 
assumed 2c = S for the YWS. Here it is first shown by elementary means that the relation between 
c and S varies with A, and then the functional relation is supplied for all A. When applied to the 
bcc-fcc system, it is found that Llc has two zeros whereas LlShas one not equal to either of those of 
Llc. Starting with smalU, the sequence oflowest energy structures is bcc, fcc, and bcc if these are 
the only two allowed to compete. The equations for the sc case have not been evaluated, but it is 
expected that the full sequence for the cubics will be found to be bcc, fcc, and sc, as this author 
reported for the Gaussian-Wigner solid. 

PACS numbers: 64.70.Kb, 61.50.Lt, 71.45.Nt 

1. INTRODUCTION 

This is the second of a two-part report on generalized 
Wigner' solids (WS's) in which the usual uniform back­
ground charge of a WS if> replaced with a background pos­
sessing variable "ripple" in the charge. The WS has point 
charges Q (of either sign) located at the lattice sites of a Bra­
vais lattice with neutrality being maintained with a uniform 
background. The first paper2 treats the Gaussian WS (GWS) 
in which the background is formed by centering about each 
lattice site the charge distribution - Q (phr) 3/2exp( - prj. 
In this paper the charge distribution 
- Q (A 2/41T)r- 1exp( - Ar) is similarly centered to form the 

background of the Yukawa WS (YWS). As the ripple param­
eters p and A go to zero the WS is regained, and as they go to 
infinity both models become empty lattices. Although these 
models are certainly classical and Coulombic, I shall contin­
ue to use the term classical Coulomb lattice (CCL) for the 
model composed of one lattice of point charges Q and an­
other identical displaced lattice of point charges - Q, which 
gives one of the simplest models for ionic crystals. If in the 
GWS or YWS models one displaces the centering location of 
the Gaussian or Yukawa distributions, respectively, with re­
spect to the lattice of point charges, one secures in the limit of 
large ripple parameter the CCL. The derivations I have pro­
vided2 for the GWS and shall supply here for the YWS are 
easily transcribed for these "displaced" GWS and YWS 
models. Thus, this study of the GWS and YWS models pro­
vides the basis for a very wide class of Coulombic models 
from which one might select a model more suitable than the 
widely used WS. Birman3 has used Gaussians in various 
ways to improve upon the CCL as a model for the ionic 
crystals and Medeiros and Mokross4 have used the YWS to 
represent phase transitions in systems formed by polystrene 
particles in aqueous suspensions as observed by Williams et 
al. 5 

The purpose of this paper is to supply derivations of the 
Fuchs energy c, the Madelung energy S, and functional reI a-

tions between these two. For two competing lattices, it is the 
zeros of Llc, and not of LlS, that determine when transitions 
occur as a function of ripple parameter. Recently, I report­
ed6 some of the final results for the GWS and YWS models, 
applied them to the cubic lattices, and pointed out that Me­
deiros and Mokross had correctly calculated S YWS but had 
incorrectly assumed that 2cYWS = SYws. Presumably, they 
made this assumption in anology with the WS results 
2cwS = S WS, or perhaps in analogy with the non-Coulombic 
Lennard-Jones model. There are at least two ways one can 
see, without long derivations, that the relation between c and 
S must vary with the ripple parameter. 

First, the CCL models obeys cCCL = SCCL, which is 
suggestive. Second, in the empty lattice limit, for which the 
potential C/> (r) vanishes, both c and S must diverge to negative 
infinity with leading terms that do not satisfy 2cequal toS. A 
discussion of this limit for the GWS has been given in Ref. 2 
and used to provide a stringent test of the final results. Here I 
shall also use this limit on the YWS to provide a test of the 
final results, but I wish first to use it to clarify the definitions 
of these two energies c and S and to show that a functional 
relation between cYWS and SYWS must vary with the ripple 
parameter A. 

As in Ref. 2, define K (r) and S (r) with K = (0) and 
S=S(O) by 

C/>(r)=(C/»+S(r)/Q+Q/r, (1) 

K(r) = QC/>(r) - Q2/r = S(r) +A, A = Q (C/», (2) 

S=limS(r) = limQ [C/>(r)- (C/» -Q/rl. (3) 
r-O r ~O 

Once the C/> (r) is defined, the K (r) and S (r) are defined. The 
C/> (r), K (r), K, and A are multi valued via the arbitrary average 
potential (C/> ), but the S (r), S, and c are unique. Later I shall 
have to develop various expressions for S (r) with (r) not equal 
to zero or equal to any other vector of the lattice providing 
the sites for the point charges, because S (r) is needed in the 
derivation of various expressions for c for general A. Howev-
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er, the situation is much simpler for the empty lattice limit. 
Until recently errors were made in applications of 

Ewald techniques which are equivalent to incorrectly equat­
ing K and S in the theory of S, and K (r) and S (r) in the theory 
of €; HaW uncovered the first error the Ihm and Cohen x 

uncovered the second for the WS case. The canceling effect9 

of these two errors for the WS and the related matter of 
"Evjen 10 oscillations" for the CCL model of CsCI has been 
discussed. From the form ofEq. (2) one sees why K has been 
viewed as the energy of interaction of one point charge Q 
with all other charge; it is a set of quantities corresponding to 
all possible finite choices of (<I> ) and contains the singlet S. 
The relation betweenK (r) andS (r), and hence betweenK and 
S, is not complicated by the arbitrariness of the average po­
tential in the empty lattice limit, because <I> (r) vanishes in this 
limit and the setK reduces to the singletS. Thus in the empty 
lattice limit S is given by the interaction of Q with the local 
Yukawa distribution which is very "bunched" up at the 
same site. An elementary physics calculation shows that the 
leading term inSis given by - AQ" aSA approaches infinity. 

The Fuchs energy € is the interaction energy of all 
charge normalized to the volume n occupied by each point 
charge Q. As the local background charge near a point 
charge Q bunches up in the empty lattice limit to become a 
point charge - Q, the leading term in € arises from two 
sources: the interaction of the charge Q with the local 
Yukawa distribution and the interaction of the Yukawa dis­
tribution with itself. The first of these is just S, and the sec­
ond is readily shown to be given by AQ 2/4. Thus we have 

SYWS _ _ AQ2, €YWS __ 3AQ 2/4, 0<,1, (4) 

The corresponding results for the GWS are given in Eqs. (16) 
and (38) of Ref. 2. 

Thus it is seen that the Medeiros assumption that 
2€ = S for the YWS does not hold in general for the G WS or 
YWS, but it does hold in the WS limit of these two. Figure 1 
shows that for the bcc-fcc system there are two zeros of.::1 (2€) 

(bee-fcc) 
4,10-' 

yYWS 

3 \6~_ 
/ "-

XYWS 
2 I "- /6 / 

1.0 1.2 14 

FIG. \. Comparison of the (bee-fcc) differences for the Madelung (S = FX) 
and twice the Fuchs 120 = FY) energies reduced by F = Q'If} 1/' as a func­
tion of the "ripple" parameter (v = A If} II3/21T) for the regular (WS) and 
Yukawa-Wigner solids (YWS). Zeros of.:1 yYWS locate transitions. Middle 
portion (dashed) or curves is only schematic. 
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neither of which is equal to the single zero of .::1S. 
Section 2 supplies derivations for S, Sec. 3 treats €, and 

Sec. 4 gives further discussion. 

2. EXPRESSIONS FOR K(r) AND S(r) FOR THE YWS 

Denote with! 1" l a Bravais lattice with volume n per 
lattice point. Denote with! y l its reciprocal normalized by 
exp(iY'1") = 1. The charge distribution for the YWS is given 
in the sense of tempered distributions II by 

p(r) = QI[D(r _ 1") _ ,12 exp( -A Ir - 1"1l] 
T 41Tlr - 1"1 

(5) 

= {-by exp(iy.r), b = Qy21n 
L y (Y+A2) 

(6) 

for 0.,;;,1 < 00. Use units such that a point charge Q gives a 
potential Q Ir and V2<1> (r) = - 41Tp(r). Through Eq. (2) one 
form for S (r) is found from 

<I> (r) = (<I» _ 41TQ + QIexp( - Air - 1"1), 0 <A. 
nA 2 T Ir - 1"1 

(7) 

This shows that if one takes <I> (r) to be given by the last term 
only, one is tacitly assuming that the average potential is 
given by the second term, which is equivalent to defining 
(<I» by the limit as y goes to zero of (41Tb y )/Y. This corre­
sponds to defining <I> (r) as the limit of the sequence of pot en­
tials associated with a finite nested sequence of summation 
cells9 where each summation cell is a proximity cell centered 
about a lattice site and each cell possesses a charge distribu­
tion Q [15 (r) - (A 2/41T)r- Iexp( - Ar)] centered about its lat­
tice point and extending outside the cell. Equation (2) gives 

S(r)=Q2IexP(-Alr-1"I)_Q2 _ 41TQ ", 0<,1 
T Ir - 1"1 r A 2n 

(8) 

which is useful for large A. A form useful for small A is also 
needed. This could be eventually secured by using an inte­
gral transformation 12,4 on the summand ofEq. (8), but I shall 
derive other forms for S (r) for the YWS by methods analo­
gous to those used in Ref. 2 for the GWS. Then, to establish 
consistency, I shall show that the new expressions are equiv­
alent to Eq. (8). This procedure has the advantage of showing 
how the limiting process defining <I> (r) and K (r) gives rise to 
various expressions for (<I> ) and how the independence of 
S (r) on (<I> ) arises in Ewald techniques. 

It is only necessary that (<I> ) be treated equivalently 
everywhere. For definiteness, choose a summation cell9 for 
defining <I> (r) to be the proximity cell and imagine a finite 
array of these centered on lattice sites. Let each cell contain 
the charge that an identical cell contains in the infinite 
charge array, so the charge associated with a summation cell 
does not extend outside the cell. The charge in each cell will 
have reflection symmetry (no dipole moment), and a finite 
array of them will possess a well-defined potential if a point 
charge Q is taken to contribute Q Ir. The limit of an infinite 
nested sequence of these finite arrays defines the total poten­
tial <I> (r) such that (<I> ) is given by Eq. (5) of Ref. 9, which we 
do not need explicity here. With this limiting process under­
stood on the 7 summation, Eq. (2) gives 
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_ (~I, exp( -A Ir - wi) d3z 
J041T w Iz - rllz - wi 

= lim N ,[_1 __ ~ (I, exp(i'Y'z) d 3Z ] 

N~""~ Ir - TI n J y (r + A 2J1z - rl 

(9) 

_ ~ ( I, exp(i'Y'z) d 3
Z n Jo y (r + A 2)lz - rl 

(10) 

N i"" dv = lim I' --If-2 {exp[ - vir - T)2] 
N~"" T 0 (1TU) 

_ ~ (I,exP[i'Y'Z - viz - r)2] d 3z} 
nJ y r+ A2 

_~(I,exp[i'Y.z-V(~-r)] d 3z, (11) 
n Jo y r +A 

where the Poisson summation formula (PSF)13 is used to 
secure Eq. (10) and the lemma ofEq. (A3) of Ref. 1 is used to 
get Eq. (11). Following the analysis of Ref. 1, passing the T­

summation inside the integral in Eq. (11) brings in the aver­
age potential such that K (r) = S (r) + A where 

S (~) = ("" (1TU)-lf2{I,'exp[ _ V(T _ r)2 
Q Jo T 

_ ~(!!...)3f2I, exp[i'Y.r - (r/4v)] } dv (12) 
n v y r+A2 

SWS(r) _~ 
Q2 n 

X (""(1TV)-lf 2(!!...)3f2!' exp[i'Y.r - (~/4v)] dv (13) 
Jo v y r +A 

= SWS(r) _ 41TA 2i"" ~' exp(i'Y.r - sr) ds (14) 
Q2 n 0 7 r+A2 ' 

where S WS(r) denotes the WS limit of A = O. For conve­
nience of reference in the sequel various expressions for S ws 
(r) are given in Appendix A. In Appendix B it is shown that 

Sir) _ SWS(r) 41TA 2~, exp(i'Y·r ) (15) 
Q2 -~ - 117 r(y2 +A 2) 

SWS(r) _ 41T 

Q2 n 

X ('" [1 - exp( - SA 2)]I,'exp(i'Y.r - sr) ds, (16) Jo y 

Note that the integrand ofEq. (16) is not equal to that ofEq. 
(14). The form ofS(r) given by Eq. (15) is especially useful in 
deriving expressions for E and for small A gives the expres­
sion for S = S (0) 

S=Sws_ 41TA2Q2~, 1 (11) 
n 7 y2(y2 +A 2) 

Next I make connections with Eq. (8) using Eq. (16) and 
Eq. (A4) to write 

Q2 41TQ2 
S(r)= --+-­

r n 
xi"" exp( - SA 2) ~:-exp(i'Y.r - sr) ds 

o y 
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(18) 

Q 2 41TQ 2 41TQ 2 
=----+--

r nA 2 n 

xi"" exp( - SA 2)I,exp(i'Y.r - sr) ds. 
o y 

(19) 

Setting s = l/4v and applying the PSF gives 

Q2 41TQ2 S(r)= _____ +Q2 
r nA 2 

Xi""(1TU)-lf2exp( - A 2/4v)I,exp[ - vir - T)2] dv. 
o T 

(20) 

For positive A the order of summation and integration in this 
equation can be interchanged giving, with the aid of the 
transformation 12 mentioned earlier, Eq. (8). 

Equations (13 H 11) together with Appendix A provide 
checks of the correctness of the derivations in that S (r) re­
duces to S WS(r) as A goes to zero. For a check in the empty 
lattice limit note that Eq. (8) gives 

S = AQ 2 _ 41TQ 2 Q 2~,exp( - AT) 
nA 2 + ~ T ' 

(21) 

from which follows the first expression in Eq. (4); instead of 
using Eq. (8), one could also use Eq. (20) to secure the first of 
Eq. (4). 

Properties of .:is for two lattices 

In order to calculate .:is for two Bravais lattices, it is 
convenient to use Eq. (21) for very large A and Eq. (11) for 
very small A. These two suffice to locate the zeros of .:is (and 
later .:lE) for the bee-fcc system as shown in Ref. 6 and the 
present Fig. 1. The mutual reciprocity of the bee and fcc 
lattices can be exploited by defining mutually-reciprocal, 
unit lattices (a,b) by T = n 1/3a, 'Y = 21Tb/n If3, and 
exp(21Tia·b) = 1. Define S = FX, F = Q 2/ n If3, 
W = A (n If3/21T),and.:lX = X(a) - X(b). Then Eqs. (21)and 
(11) give, respectively, 

.:lX = I' exp( - 21Twa) _ I,exp( - 21T{J)b) (22) 
a a b b 

=.:lXWS+M, (23) 

where 

M = (: )2{~' a2(a2 ~ (J)2) - ~'b 2(b 21+ {J)2J (24) 

Equation (24) can be expanded6 in a Taylor's series in {J)2 with 
the coefficients involving Lennard-Jones 14 sums. This was 
done as described in Ref. 6 to compute values of .:lS for small 
(J) as shown here in Fig. 1. For systems other than the bee-fcc 
it may be necessary to calculate.:lX at intermediate values of 
(J), and then it would be necessary to use the theta function 
method as employed by Medeiros and Mokross.4 From work 
by Foldyls theX ws for the cubic lattices have been calculat­
ed to ten significant figures. 

Let us next consider comparing the S 's for two Bravais 
lattices that are not reciprocally related. Denote the associat­
ed unit lattices with a and a', chosen such that 
.:lX = X (a) - X (a') yields .:iX ws as negative. In Eq. (22) re­
place b and a', and in Eq. (24) replace a by a'. One can still use 
Eq. (24), so modified, with a Taylor'S expansion to sketch.:lX 
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for small w. Using just first-neighbor contributions in the 
modified Eq. (22), one can quickly determine whether LiX 
approaches zero from above or below as w approaches infin-

3. THE FUCHS ENERGY 

ity. In the latter case LiS probably does not possess a zero for 
finite w; this was found to be the case for the fcc-sc and bcc-sc 
systems in the GWS model,2.6 where SC denotes simple cu­
bic. 

The Fuchs energy E is independent of the particular summation ce1l9 one uses except that the same summation cell must 
be used everywhere. I shall use the same summation cell that I used in Eq. (9), and my derivation parallels that given in Ref. 2 
for the GWS which in turn parallels that given in Ref. 9 for the WS. The definition ofthe Fuchs energy is 

~= lim~ {ff_I_+££~i-r!!eXp[-A(IZ-WI+lz'-W'I)] d 3zd 3z' 
Q2 N-ooN TT'#TLi7 T T,(417Y Jaw w' ILiT+Lizllz-wllz'-w'l 

_ 2£ £~i! exp( -A Iz - wI) d 3Z} 
T T' 41T Ow ILiT + zllz - wi 

(25) 

(26) 

where wand w' are 7 lattices and PSFhas been used to secure Eq. (26) from (25). Setting A equal to zero regains Eq. (6) of Ref. 9 
for the WS. Next group together the terms given by T = T' in Eq. (26) to give 

~ = ~i- r ~ ~ exp(iy"z + iy' "z') d 3
Z 

d 3
Z

' _ U 2 i~ exp(iy·z) d 3
Z 

Q 2 n 2 0107 ft Liz(r + A 2)(y'2 + A 2) n 07 z(r + A 2) 

I. 1 ~ ~ 1 ( .. ) + 1m - L.J L.J - remammg terms. 
N~oo N T T'#TLi7 

In the next step I shall change the summation limit on 
the 7' summation to infinity. The proof of its validity is exact­
ly the same as given for the GWS in its Appendix and will not 
be repeated here. With this step justified, one can with a 
change to summation over Li7 write the last term in Eq. (27) 
as 

d
3
z d

3Z'] . 
(28) 

Putting this into Eq. (27) and rearranging the terms gives 

2E = K _ ~ r ! K (z)exp(iy"z) d 3Z 
nJo y r+ A2 

- Q 2~i! exp(iY"Z~ d 3Z . (29) 
nay z(r +A ) 

This may be simplified, and E shown to be independent of the 
average potential, by substituting K = S + A and 
K (r) = S (r) + A, which leads to cancellation of the two terms 
containing A. Thus Eq. (29) holds with K replaced by Sand 
K (r) replaced by S (r), giving 

2E = S -! A 2 2 [~( S (z)exp(iy"z) d 3Z ] 

Y (r +A ) nJo 
_ Q 2! A 2 2 [~r exp(iy"z) d 3Z ]. (30) 

y (r + A ) n Jo z 
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(27) 

The second term in Eq. (30) can be simplified by using Eq. 
(15) to give 

~ r S (z)exp(iy"z) d 3Z nJo 
Ii 41TQ2A 2 = - S WS(z)exp(iy"z) dz - r r 2 ' non ( +A) 

= ~ r S WS(z) dz, Y = o. 
nJo 

(31) 

Note that the integral of S WS(z) over the centered summation 
cell is equal to the negative of the integral ofz- I over the cell, 
substitute this into Eq. (30), and find that 

41TQ 2 oo, A4 
2E=S +--2: rr A2 n y ( + ) 

_ t A 2 [~ r SWS(z)exp(iy"z) d 3Z ) 
Y (r + A 2) n Jo 

_ Q2!' A 2 [~r exp(iy"z) d 3Z]. (32) 
y (r + A 2) nJo z 

To simplify the last two terms, set A equal to zero in Eq. (18) 
to give 

41TQ 2100 
00 Q 2 SWS(r) = -- 2:'exp(sr + iy"r) ds - -, 

nay r 
(33) 

and substitute this into Eq. (32) to secure 

(34) 

George L. Hall 212 



                                                                                                                                    

WS (417'Q
2 

'" , ..i 2 ) 

=S -2 -n~f(f+..i2) 
41T'Q2"" ..i4 
+-n~ f(f+..i2)2' (35) 

where Eq. (17) is used to get Eq. (35), which is useful for small 
..i. 

One can find directly from Eq. (35) an alternate form 
useful for large ..i,but I shall first give a functional relation 
between E and S and then use it to secure the alternate ex­
pression for E from Eq. (21) for S. 

4. THE FUNCTIONAL RELATION AND DISCUSSION 

Define 2E = FYand use the notation ofEq. (22) to write 

,UJ2 . UJ4 
Y=X-~ +~-------'1- (1T'b 2)(b 2 + UJ2) '1- (1T'b 2)(b 2 + UJ2f 

Also substitute into Eq. (17) rewritten as 
2 

X=X WS _~' UJ , 
'1- (1T'b 2)(b 2 + UJ2) 

which yields 
2 

Y=XwS_2~' UJ 
. '1- (1T'b 2)(b 2 + UJ2) 

(36) 

(37) 

Now it is evident that Y and X obey the functional equation 

Y=X +~ dX. (39) 
2 dUJ 

If we apply this functional equation to Eq. (21) for S rewrit­
ten in terms of X as 

X = _ 21T'UJ __ 1_ + I' exp( - 21T'UJa) , 
1T'UJ2 

a a 
(40) 

we find 

Y - 31T'UJ + I' exp( - 21T'UJa) - 1T'UJ I'exp( - 21T'UJa). 
a a a 

(41) 

An immediate check on the accuracy ofEq. (39) and (41) is 
given by the empty lattice limit for which 

Y- - 31T'UJ, OrE- - 3..iQ 2/4. (42) 

in agreement with Eq. (4) found by elementary means. 
Additional expressions for Y follow from setting r equal 

to zero in Eqs. (12)--(16) and (18)--(20) and applying Eq. (39) 
also holds with X replaced by ..::lX and Y replaced by ..::l Y, 
where the..::l refers to the difference of a quantity evaluated 
on two lattices. 

For the bee-fcc system, Fig. 1 shows how..::l Yvaries with 
UJ. Note Yhas two zeros whereas..::lXhas only one. Medeiros 
and Mokross4 correctly found the single zero of ..::lX but in­
correctly assumed that..::l Y = ..::lX. I used Eqs. (37) and (38) 
for small UJ and Eqs. (40) and (41) for large UJ; it was not 
necessary in finding the zeros to calculate the curves in the 
intermediate domain indicated schematically by the dashed 
lines. 

For other systems the zeros may fall in the intermediate 
domain, and then it may be necessary to use the theta func­
tion method (TFM), which for the YWS is slightly more 
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complicated than for the WS. The TFM as used to evaluate 
S WS(r) and S ws is described briefly at the end of Appendix 
A; one way to use the TFM to evaluate S (hence X or ..::lX ) is 
given by Medeiros and Mokross, which one could also use on 
Yor..::l Y. For ..::lS, their procedure amounts to working with 
Eqs. (18) and (20). I should add that at small UJ it may be 
advantageous to separate out ..::lS ws in both equations, i.e., 
work with Eq. (16) instead ofEq. (18). 

From Eq. (39) it is seen that ..::l Y equals ..::lX at the ex­
trema of ..::lX, and 

d..::l Y UJ d 2..::lX 
-- = - --, at extrema of ..::lx. (43) 

dUJ 2 dUJ 2 

Thus at the single maxima of of ..::lX for the bee-fcc system in 
Fig. lone has that..::l Yequals..::lX and..::l Yhas a negative slope 
there. Also at the extrema of..::l Yone has 

d..::lX d 2..::lX 
3-- = - UJ--

2
-, at extrema of..::l Y. 

dUJ dUJ 
(44) 

Finally note that although the Y's and X 's are tightly coup­
led for the GWS and YWS models through functional equa­
tions, the functional equations differ. 

APPENDIX A 

This appendix contains various expressions for S WS(r) 
from which S WS(O) = S ws may be evaluated. 

Take Eq. (12) and set..i equal to zero to write 

SWS(r) = ("'(1T'V)-1/2 
Q2 Jo 

{ ~. 2 I (1T')3/2} d X ..;- exp[ - v(y - r) 1 - n -; v 

(AI) 

= Sa'" (1T'V)-1/2 

X {~ (: y/2~, eXP(iy.r _ ~) 

- exp( - Vr)} dv, (A2) 

where Eq. (A2) follows by the PSF.13 Next set v = 1/4s, 
which gives 

S WS(r) = 41T'Q 2 

n 
X Sa'" [~·eXp(ir.r - sf), 

_ n exp( - r/4S)] ds. 
(41T'S)3/2 

Ifr~! T! one can also write 

(A3) 

Q2 41T'Q2i'" "'. 
S WS(r) = - - + --- I exp(iy·r - sf) ds, (A4) 

rna y 

but one cannot interchange the summation and integration 
in Eq. (A4), because that would give a conditionally conver­
gent expression. To obtain S ws just set r = 0 in Eqs. (A 1)­
(A3). 

To evaluate S WS(r) and S ws use the integrand of Eq. 
(AI) over the domain 0 < do;;; v < 00 and the integrand ofEq. 
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(A3) over the domain (1/4d ).;;;s < 00. Then in each integral 
interchange the order of summation and integration. The 
sum of the two parts can be readily evaluated with a few 
terms from each part provided d is chosen to "balance" the 
contributions from each part. A fairly good choice is given 
by d = 1T{} 2/3. 

APPENDIX B 

The purpose of this appendix is to prove Eqs. (15) and 
(16) follow from Eq. (14), i.e., to prove for positive A that the 
defining expression 

1= i oo fA 2 exp(iy·r ~ sr) 
o y r+A-

can be written also in the two ways 

I = ~'A 2 exp(iy.r) 
7 r(y2 +..1. 2)' 

(Bl) 

(B2) 

1= i oo 

f'[ 1 - exp(sA 2)]exp(iy.r - sr) ds. (B3) 
o y 

Note that the integrands of Eqs. (Bl) and (B3) are not equal. 
If one can establish that interchange of the order of 

summation and integration is legitimate in Eqs. (B 1) and 
(B3), the proof is immediate; then Eq. (B2) follows directly 
from Eq. (Bl), and with the aid of partial fractions Eq. (B3) 
follows from Eq. (B2). This device is, if justified, much 
simpler than applying the PSF to Eq. (Bl). 

Divide the domain of integration into 0';;;s.;;;8 and 
8.;;;s < 00. The interchange is clearly justified for the second 
domain. Thus it is necessary to prove that in the limit of 8 
approaching zero the following two integrals vanish: 

ibIoc 
, A 2 exp(iy·r - sr) d 

') ') S, 
o y Y-+A-

(B4) 

i
ii 00 

I' [1 - exp( - SA 2)exp(iy.r - sy2)] ds. 
o y 

(B5) 

It suffices to treat the notationally simpler case of r = 0 
and prove that in this limit J and L vanish where 

i

ii oc ,1,2 
J = ",,' 0 ,exp( - sy2) ds, 07 r +,1,-

(B6) 

L = iii f'[ 1 - exp( - SA 2)]exp( - sy2) ds. 
o y 

(B7) 

Consider J and set s = 8x giving 

J = 81' [ - 1 + f' 2 ,1,2 2exp( - 8xr )] dx, 
o y y +,1, 

(B8) 

lim J = lim8 (' f' 0 A 2 0 exp( - 8xy2) dx. 
Ii .0 Ii_O Jo y r + A -

(B9) 
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Instead of deriving the PSF expression for the sum inside the 
integral of Eq. (B9), it is only necessary to recall that the 
"term at the origin" in a PSF expression is given by the inte­
gral approximation to the sum. Thus for the present pur­
poses replace the sum by 

..!.-fffoc exp~ - 8x~2) d lU, (B 10) 
v u- + ,1,-

where v = 81T' /{}. Then it follows easily that 

limJ = lim 4d 2y' 8 = O. 
Ii ·0 Ii .0 

(Bll) 
v 

Next consider L and again set s = 8x giving 

L = 8i' [1 - exp( - 8,1, 2x ]f'exp( - 8y2x) dx. (BI2) 
o y 

Since A is positive but otherwise arbitrary, fix it and then 
choose 8,1, 2 < 1. Then 

I' YO 

limL = limA 282 xI'exp( - 8y2x) dx 
Ii ·0 Ii .0 0 Y 

(BI3) 

= limA 28 2 ('~(~)3/2 dx = 0, 
Ii .0 Jo v 8x 

(BI4) 

when the first term in the PSF expression for the sum in Eq. 
(B13) has been used in Eq. (15), i.e., the integral approxima­
tion to the sum. 

This completes the proof. 
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Ellis, Maartens, and Nel have discussed the viability of static spherically symmetric (SSS) 
cosmologies in general relativity, and in doing so they have studied some of the mathematical 
aspects of the field equations in that situation. We investigate further these mathematical aspects. 
Since the field equations correspond to those studied for stellar models, this question is related to 
previous investigations in that context. In particular, it is shown that conditions at the center of 
symmetry do not always uniquely determine the space-time geometry; this has relevance to the 
numerical investigation of stellar systems. Finally, in view of the need to generalize SSS models, 
some remarks are made on the possibility of relaxing the staticity condition in the case of models 
that are shear-free. 

PACS numbers: 98.80.Dr 

1. INTRODUCTION 

In a recent thought-provoking article, Ellis, Maartens, 
and Nell consider the consequence of adopting an uncon­
ventional interpretation of the observed isotropy of the ga­
lactic redshifts. Can the observations, they wonder, be ex­
plained by means of simple static spherically symmetric 
models, without invoking any of the unverifiable philosophi­
cal arguments (such as the usual cosmological principles) 
which lead to spatially homogeneous cosmologies? They 
consider general relativistic static spherically symmetric 
models, and examine theoretical aspects of observations that 
could be performed, for various possible values of the some­
what repungnant cosmological constant, A. The line-ele­
ment is of the form 

ds2 = - i'(r) dt 2 + dr + 12(r)(de 2 + sin2e d¢ 2), 

and the source of the gravitational field is assumed to be a 
perfect fluid. Under these circumstances, the field equations 
of general relativity,2 viz., 

Gij +Agij = TiJ' 

become 

and 

j" g" /,g' 
-+-+-=p-A, 
1 g Ig 
2j" /,2 1 
f + 12 - 12 = - 11 - A, 

(l.1a) 

(l.1b) 

(l.1c) 

where a prime (') denotes differentiation with respect to r; the 
fluid flowlines are tangent to the unit vector u i = g-18~, and 
/1 and p are, respectively, the energy density and pressure of 
the fluid. Equations (1.1) are compatible whenever the Bian­
chi identities G iJ;j = 0 are satisfied, i.e., when 

f,f1 + p)(g'/g) + p' = 0, (1.2) 

which is the radial equation of hydrostatic support. 
Ellis, Maartens, and Nell next consider the mathemat-

ical features of the differential equation system (1.1), observ­
ing in particular the in variance under the 2-parameter group 
of transformations 

g-+Ag, (1.3a) 

r-+K-Ir, I-+K-I/, I1-+K2/1, A-+K2A, P-+K2p, (1.3b) 

where K and A are nonzero real numbers. For physical rea­
sons discussed in their article, they suppose that the matter 
has an equation of state p = ~. The authors state, somewhat 
ambiguously, that, with this equation of state, it does not 
seem possible either to obtain general analytic solutions to 
Eqs. (1.1), or to obtain the qualitative behavior of the solu­
tions by use of phase-plane methods "except in the cases 
A = 0; 11 = 0, or A = 11", Accordingly, the system is exam­
ined numerically. Some ambiguity arises, first because, from 
this remark alone, it is not clear as to which possibility (ana­
lytic solution or qualitative behavior) the exceptional cases 
refer, and secondly because of the manner of labelling the 
three exceptional cases. The situation is somewhat clarified 
later on, when the authors consider the nature of the solu­
tions as being dependent on two quantities, viz., A and 110' 
the value of the energy density along the central world-line 
r = 0 (for physical reasons, 110 is assumed to be nonnegative; 
in the mathematical analysis it is tacitly assumed that /10 is 
finite, and indeed when the physical applications are consi­
dered this is explicitly stated). First, three specific cases (the 
expectional ones) are examined. They are at this stage more 
precisely labelled as 

(1) A = 110 = 0. This is Minkowski space-time. 

(2) A #0,110 = 0. This is de Sitter space-time if A> 0, 
and anti-de Sitter space-time if A < 0 (see, e.g., Hawking and 
Ellis3

: this corrects the statement made in Ref. 1). 

(3) A = 110 > 0. This is claimed to be the (generalized) 
Einstein static universe. 

The authors state "in the other cases, we have to rely on nu­
merical integration." It now becomes clear that the authors' 
first manner of labelling (A = 0; /1 = 0, and A = 11) was im­
precise, that they regarded numerical integration as being 
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required in all other cases, and that they believed that cases 
(1 )-( 3) were the only ones capable of analysis either by exact 
solution or by phase-plane methods (or both). Furthermore, 
the authors' more precise labelling involves the quantity Ilo, 
and it is tacitly claimed that if Ilo = 0 then 1l=0, and if 
Ilo = A thenll A. The authors now resume their analysis of 
the system (1.1) by means of numerical methods, leading to 
an exhaustive classification of all possible choices of ordered 
pairs (.uo, A; llo;;;'O), and invoking the additional cases 

and 

(4) A >Ilo> 0, 

(5jllo>A >0, 

(6) A ,:;;0, llo#O. 

From the physical point of view of applicability to the SSS 
cosmologies, Ellis, Maartens, and Nel require that the cen­
tral energy density Ilo be strictly positive, and they also re­
quire that initial values of the red-shift near the center be 
strictly positive [from which follows the inequality 
A > Ilo > 0, and so case (4) is the only candidate for applica­
tion]. Nevertheless, Ellis, Maartens, and Nel take pains to 
study the properties of all six cases, because at that stage they 
are concerned (as I am here) with purely mathematical 
aspects of those cases. 

In this article, I wish to make some further comments 
regarding the mathematical analysis of the system (1.1). This 
system is first reduced to a system of three first-order ordi­
nary differential equations. Since p = p(r) and Il = Il(r), ei­
ther Il is identically constant or there is an equation of state 
p = p(.u). The case where Il is identically constant includes 
the interior Schwarzschild solution, and is discussed else­
where. 4 I shall be concerned chiefly with the case where 
p = p(.u j, with the additional assumptions 11. + P=l=O and 
dp/dW=l=O [the former represents a reasonable energy condi­
tion; the latter is enforced to avoid the case where 
g(rj==const, since then the fluid flow is geodesic and the met­
ric is Friedmann-Robertson-Walker,5 and is in fact a gener­
alized Einstein static model]. An exception to this, which 
will be discussed, involves generalizations of cases (1) and (2) 
above, in which, under special conditions, the constancy of 11. 
and p is proved (rather than assumed). It is pointed out that if 
the equation of state is of the form p = (y - 1)1l (a y-Iaw 
equation of state; r is a constant, r#O, r# 1), a qualitative 
(phase-plane) treatment is obtainable in the special case 
when A = 0, and that further exact solutions are known in 
that case. From the viewpoint of ultimate application to the 
SSS models alone, this special case is admittedly unphysical, 
and the exact solutions exhibited are inapplicable, since they 
possess only one center of symmetry, which is irregular. 
Nevertheless, in keeping with the purely mathematical 
aspects of the analysis of Ellis, Maartens, and Nel, I it is of 
interest to examine the A = 0 case [cases (1) and (6) of Ellis, 
Maartens, and Nel], and the role of the special exact solu­
tions. Indeed, the results are also of interest to consider­
ations outside the realm ofSSS cosmologies, i.e., to the study 
of static stars. It is also possible to replace an irregular cen­
tral region of the special solutions by matching appropriate­
ly to solutions that are regular at the center, and from this 
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viewpoint the special solutions have more physical signifi­
cance. 

In Sec. 3, we consider how conditions at the center of 
symmetry (r = 0) determine the solution elsewhere (at r> 0). 
The tacit claim that if p = .y.t, Ilo = 0 implies 1l=0 is easily 
proved, but it is not at all clear how the condition Ilo = A 
impliesll=A, in which case the solution is the Einstein static 
model, generalized to the equation of state p = .y.t. We do 
show that there are certain equations of state for which the 
appropriate central condition on the energy density does not 
uniquely generate the corresponding generalized Einstein 
static model, although the situation when p = .y.t remains 
obscure. This question is not trivial, since the usual coordi­
nate and tetrad bases are not defined at the center, and as a 
result the usual theorems relating to the uniqueness of solu­
tions of ordinary differential equations do not apply. 

Some further remarks, concerning the application of 
nonstatic spherically symmetric models to the observation­
based cosmology of Ellis, Maartens, and Net, are provided in 
Sec. 4. 

2. THE SYSTEM OF EQUATIONS (1.1) 

The question of static spherically symmetric geometries 
in general relativity is often considered in the context ofstel­
lar, rather than cosmological, situations. It is convenient to 
use the functionf(r) as an alternative radial coordinate. Be­
fore doing so, however, we briefly discuss the case when this 
is not possible, i.e., whenf'=O. We first note that if 
11. + p=O, it follows from the field equations that the space­
time is an Einstein space, and hence3 is either Minkowski, de 
Sitter, or anti-de Sitter space-time. In particular, iff' 0, we 
obtain from (Ub) and (l.lc) thatll + p 0, and de Sitter 
space-time results. Henceforth we shall assumell + p=l=O so, 
afortiori,f'=I=0. Following Kramer et al.,4 but including the 
cosmological constant, we have from (1.1 b), 

(
df\2 = 1 _ 2m(f) 
d-;'} f 

where dm = ~ (.u + A )f2 
df 2 

(2.1a) 

and, by (Uc) and (1.2), 

2f(f - 2m) dp = - (.u + p)(2m + (p - A )f3). (2.1b) 
dr 

Let M = m/ J, D = ~J1f2, P = ~f2 and A = 0f2. Then 

dM 1 
df =/(D+A -M), 

and 

dA =~U. 
df f 

Moreover, from (2.1 b), 

dD =~ 1 [D(2-4Mj- (D+P)(P+M-A)] 
df f 1 - 2M dp/dll 

whenever dp/dll=l=O. This now provides a system of three 
first-order ordinary differential equations. If we further as­
sume that p = (y - 1 )Il, where y is a constant satisfying 
y#O, y# 1, and if we write t = InJ, we obtain the autono­
mous system 
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and 

dD 

dt 
D [2_(5Y-4)M_YD+~]' 

I-2M y-1 y-1 

dM 
-=D+A-M 
dt ' 

dA =U. 
dt 

(2.2a) 

(2.2b) 

(2.2c) 

This system generalizes that considered previously,6,7 wher­
ein A = 0 (so A = 0) and the system is examinable by phase­
plane analysis. The use of the variables D, M, and A in deriv­
ing Eqs. (2.2) is suggested by the invariance property (1.3b) 
above, since D, M, and A are each invariant under (1. 3b). The 
equation of state p = (y - 1),u is also of a form which re­
spects (1.3b). [Note that it is possible to obtain a similar sys­
tem of autonomous equations directly out of the system (1.1 ), 
using variables constructed from/ and g and their deriva­
tives, which are invariant under the transformations (1.3), 
The alternative approach used herein is thought to provide 
more physical insight, since the quantity m(f) is related to 
the total mass within a radius!] The denominator 1 - 2M in 
Eq. (2.2a) does not vanish identically, for, if it did, then 
2m fin (2.1a), and so!,-O, a contradiction. 

It is of interest to observe that the system of Eqs. (2.2) 
has exactly two fixed points, where the right-hand sides van­
ish identically. These are given by 

(i) D = M = A = O. This corresponds to Minkowski 
space-time, since by (1.1c) and (2.1a),!,2-1 andg'=O. 

(ii) D = M = 2(y - 1)1[(y + 2)2 - 8]; A = O. In this 
case the energy density,u is 

_ 2D _ 4(y- 1) 1 
,u - f2 - (y + 2)2 - 8 /2 . 

Whereas the solution (ii) has been ascribed to Misner and 
Zapolsky,6,8,9 it is a special case of the class VI solutions of 
Tolman 10 and has been discussed by Wyman 1 1 and others.4 

It does not have a regular center at/ = 0 (since ,u-oo as 
/-0), and it has only one center, since 

(:02 

= 1 - 2M #0. (2.3) 

Astrophysically, it is the relativistic analog of a special sin­
gular solution of Chandrasekharl2 for certain Newtonian 
poly tropes. The functions/and g in the metric can be deter­
mined directly by integrating (1.2) and (2.3). 

The two solutions (i) and (ii) above are special solutions 
valid whenA = O. In the general A = 0 case, the system (2.2) 
reduces to one that has been examined by phase-plane meth­
ods.6 It has been shown that there are only two solutions of 
interest, i.e., in which m = 0 when/ = O. One is the 
"Misner-Zapolsky" solution, and the other is one which, as 
far as I am aware, is not known in exact analytic form. It 
possesses the property that,u is finite and nonzero at/ = 0, 
and it extends out to infinite values of/ (and infinite proper 
distance), where it approaches the Misner-Zapolsky solu­
tion. It corresponds to the usual static spherically symmetric 
stellar model with a regular center [and with an equation of 
statep = (y - 1),u]. Details are provided in Ref. 6. Treated as 
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a cosmological model, it represents a complete unbounded 
universe with negative red-shifts as observed from the cen­
tral world-line/ = 0 (cf. Refs. 1 and 13). 

A full qualitative investigation of the system (2.2) would 
be of great interest, although presently available mathemat­
ical techniques appear to be incapable of providing this. Al­
ternatively, we could search for situations in which the sys­
tem (2.2) can be reduced to a subsystem of two equations, as 
in the A = 0 case we have just discussed. One example of this 
occurs if y = 0, for then the variables D + A and M can be 
used; however, this case is not of physical interest since the 
matter would then satisfy the unrealistic equation of state 
,u + p=O. In fact, I suspect that there are no tractable sub­
systems of (2.2), in addition to those already mentioned. 

3. CONDITIONS AT THE CENTER 

From Eq. (1.2), it follows that ifp =:Vt then 
,ug4 = const, and so it is clear that if ,uo, the central value of 
the energy density, is zero, then ,u-O. This result readily 
generalizes to y-Iaw equations of state, but its generalization 
to other equations of state remains obscure. The difficulty 
arising here is due to the fact that the system of field Eqs. 
(1.1) and (1.2) is not regular at the center, r = O. As a result of 
this, the usual uniqueness theorems for solutions of systems 
of ordinary differential equations no longer hold. It does not 
seem possible to "regularize" the equations in such a way as 
to avoid this difficulty, which is also very apparent when one 
considers the orthonormal tetrad formulation of the prob­
lem, there being no regular orthonormal tetrad field adapted 
to the spherical symmetry in a neighborhood of a central 
point. 

I am not aware of any proof that when p = :Vt,,uo = A 
implies,u A. Again, the same difficulties are encountered 
at r = O. When p = :Vt, the case,u A is the Einstein static 
model, generalized to the given equation of state. For a gen­
eral equation of state, p = p(p,), and given cosmological con­
stant, the Einstein static model would be characterized by 
the condition,u + 3p=2A, and it is not clear when the cen­
tral condition,uo + 3po = 2A necessarily gives rise to only 
this case. It is possible to show that, for certain equations of 
state, the central condition,uo + 3po = 2A is satisfied by so­
lutions other than the Einstein static sol ution, i.e., at leastfor 
certain equations of state, the usual conditions at the center 
(r = 0) do not uniquely determine the space-time geometry 
elsewhere (at r> 0). This is an important point, because the 
standard numerical procedures used in analyzing static 
spherically symmetric systems in general relativity (see, e.g., 
Ref. 14) involve integration from the center, and it is clearly 
highly desirable to be able to demarcate those cases in which 
uniqueness ensues. The following argument shows that there 
are certainly situations when, for a given equation of state, 
the space-time is not uniquely determined by the usual con­
ditions at the center. 

Equations (1.1a)-(1.1c) are equivalent to (1.1b), (1.1c), 
and (1.2). Let/(r) be an arbitrary function of r, analytic and 
odd on some interval ( - R,R ), R > 0; we suppose that/satis­
fies the conditions of regularity at the center r = 0, so that l 

/(r)-o, !,(r)_l and !"(r)l/(r)_finite limit as r-o 
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(sofis expanded about the origin in the form 
fir) = r+ Lr~ I a2k + Irk+ I). Thus (f'2 - 1)/f2-6aJ as 
r---+O, and (f'z - 1 )/f2 is analytic (and even) on ( - R,R ). By 
Eq. (Ub), it follows that I'- is analytic (and even) on ( - R,R ). 
We may expand I'- about the origin in the form 
I'-(r) = Lr ~ 0l'-2k r\ where 1'-0 = - A - 18aJ and 
1'-2 = 5(3a/ - Was)· Eliminating g'/g between (1.lc) and 
(1.2), we have 

p' = (I'- + P) L (/'2 - 1 _ P _ A ) . (3.1) 
2 f' f2 

Since the right-hand side of (3.1) is analytic in p and r, it 
follows l5 that p is analytic, with Po arbitrarily specifiable. 
Choose Po such that 1'-0 + Poi=O. Then, writing (1.2) in the 
form 

g'=-~ 
I'- + P 

(3.2) 

we can apply the analyticity argument to (3.2), and conclude 
that girl is analytic in r, with g(O) freely specifiable. We may 
set g(O) = 1, without loss of generality. Clearly g satisfies the 
conditions of regularity at the center r = 0, so thae 

girl-finite nonzero limit, g'(r)---+O as r---+O, 

the latter following by letting r---+O in (3.1) and (3.2). 
We now suppose thatpo is chosen so that 

1'-0 + 3po = 2..1, and that 10asi=3a/, so that I'-z i=0. Then, 
fixing the values of all a2k + I, we have a solution of Einstein's 
field equations in whichl'-'¥oO (sincel'-zi=O), and in which 
p'¥oO [sincep'-O requires, by (Ll) and (1.2),1'- + 3p=2A, 
implying 1'-'=0, a contradiction]. The matter is inhomogen­
eous, with an equation of state p = pf,j.l) obtained by eliminat­
ing r from the relationships p = p(r) and I'- = I'-(r). On the 
other hand, given this specific equation of state, there is an 
Einstein static model with the same central values ofJL andp, 
and with the same value of the cosmological constant, and 
this is of course spatially homogeneous, and therefore dis­
tinct from the previous solution. 

Thus, for a fixed equation of state and cosmological 
constant A, it does not always follow that the central values 
of the energy density and pressure will uniquely determine 
the solution. It would be valuable to understand the clear­
cut circumstances under which, for any fixed equation of 
state and cosmological constant A, one obtains uniqueness, 
but such an investigation is beyond the scope of the present 
paper. 

4. NONSTATIC SPHERICALLY SYMMETRIC 
COSMOLOGIES 

Ellis, Maartens, and Nell speculate that some of the 
interesting features of static spherically symmetric models 
might be preserved in expanding models, which would 
moreover be more realistic. The simplest generalization 
which preserves spherical symmetry and yet introduces ex­
pansion occurs when the world-lines of the galaxies have no 
distortion (i.e., no shear), since the static case is character­
ized by requiring that both the shear and the expansion van­
ish. Now Mansouri 16 has recently shown that when the cos­
mological constant A is zero, shear-free spherically 
symmetric perfect fluid general-relativistic space-times in 
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which P = pf,j.l), JL + P¥oO, and in which there is a comoving 
timelike hypersurface of zero pressure are necessarily either 
static or spatially homogeneous and isotropic Friedmann­
Robertson-Walker models. Glass 17 has presented an alter­
native proof of Mansouri's results, in which the arguments 
are made somewhat more transparent. Further clarification 
and generalizations of Mansouri's result have been obtained 
by Collins and Wainwright. IX It may be suspected as a conse­
quence of Mansouri's result that the condition related to the 
timelike hypersurface of zero pressure could be relaxed, i.e., 
that (with A = 0) there could be no expanding shear-free 
spherically symmetric perfect fluid general-relativistic mod­
els with an equation of state p = pf,j.l), other than the Fried­
mann-Robertson-Walker models. However, this is not the 
case. One such set of solutions, having A = ° and ascribed to 
Wyman, 19 appears in the book of exact solutions by Kramer, 
Stephani, MacCallum, and Herlt. 4 Contrary to the claims in 
Ref. 4, this set is not the most general one [the special case 
A (t )-0 in (14.35) of Ref. 4 has been overlooked (in 14.57) 
whenp = pf,j.l), although Wyman 19 considered ieo]. These 
solutions are easily generalized to the case when A i=0 (see 
Refs. 18 and 19). In addition, there is an analogous set of 
solutions are easily generalized to the case when A #0 (see 
Refs. 18 and 19). In addition, there is an analogous set of 
solutions with plane symmetry. Together with the spatially 
homogeneous and isotropic Friedmann-Robertson- Walker 
models, these plane symmetric and spherically symmetric 
models comprise the only expanding irrotational shear-free 
perfect fluid general relativistic models with an equation of 
state p = pf,j.l) in which I'- + P¥oO. Proofs of these results ap­
pear in Ref. 18, and rely to some extent on an article by 
Barnes,21 which treats shear-free irrotational perfect fluids 
in general relativity. What is not clear from Barnes' paper is 
whether there actually exist anisotropic solutions which ad­
mit an equation ojstate,p = pf,j.l), and, ifso, what those solu­
tions are. This question is completely answered in Ref. 18. 
ticularly with regard to the role that the inhomogeneous 
spherically symmetric family could play in the observation­
based philosophy-free study of cosmology initiated by Ellis, 
Maartens, and NeLl 
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